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4. Poincaré-∞-categories 21
5. Poincaré objects 24
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1. Introduction

In this first section we want to give a rough overview of the main results that we
will obtain in this course. We will say very little about the techniques and the reader
not familiar with the basic objects should not be irritated as we will introduce most
of them in this course. We do however assume that everyone is familiar with the
notion of a spectrum, an∞-category and how to work in the∞-category of spectra.
Most of the new results and ideas in this course are joint with Baptiste Calmes,
Emanuele Dotto, Yonatan Harpaz, Fabian Hebestreit, Markus Land, Kristian Moi,
Denis Nardin and Wolfgang Steimle. We will refer to the collection of those authors
as #nine.
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1.1. Statement of results. Let R be a commutative ring. We want to study
unimodular symmetric forms over R, i.e. symmetric bilinear forms

q : P ⊗R P → R

where P is a finitely generated, projective R-module and such that the adjunct map

q̃ : P → DP = HomR(P,R) p 7→ q(p,−)

is an isomorphism of R-modules. Two such forms (P, q) and (P ′, q′) can be added and
this equips the set of isomorphism classes (under the obvious notion of morphism)
with the structure of an abelian monoid.

Definition 1.1. The (symmetric) Grothendieck Witt group of a commutative ring
R is defined as the group completion of the monoid of isomorphism classes of uni-
modular, symmetric forms:

GWs
0(R) = {Iso. classes of unimodular, symmetric forms over R}grp .

The (symmetric) Witt group1 of R is defined as

Ws
0(R) =

{Iso. classes of unimodular, symmetric forms over R}
{metabolic forms}

where a form (P, q) is called metabolic if it admits a Lagrangian, that is a projective,
finitely generated submodule i : L ⊆ P such that q|L = 0 and such that the induced
sequence

0→ L
i−→ P ∼= DP

Di−→ DL→ 0

is short exact.

Note that the quotient in the Definition of the Witt group is taken in the category
of abelian monoids, but we have the following result:

Proposition 1.2. The abelian monoid W0(R) is a group. Moreover the sequence

K0(R)
hyp−−→ GWs

0(R)→W s
0 (R)→ 0

is exact. Here the map hyp sends a class [P ] ∈ K0(R) represented by a projective

module to the hyperbolic form

(
0 1
1 0

)
on the module P ⊕DP .

The first part of the Lemma is straighforward to verify (and a recommendet
exercise for the reader). For the second part of the Lemma one has to work a bit to
see that after group completion hyperbolic and metabolic forms agree. Over general
ring there is a big difference between hyperbolic forms and metabolic forms2, but
the statement asserts that after group completion this difference goes away.

Example 1.3. For the ring R = Z we have the sequence

K0 Z //

' rk
��

GWs
0 Z //

' (sgn, rk−sgn
2

)
��

Ws
0(Z) //

' sgn

��

0

Z
i2

// Z⊕ Z p1

// Z // 0

1This should not be confused with the totally unrelated ring of Witt vectors W (R). Also usually
the Witt group is just denoted W (R) instead of our W0(R).

2An example of a form over F2 that is metabolic but not hyperbolic is

(
0 1
1 1

)
.
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where rk denotes the rank and sgn denotes the signature. The middle isomorphism
is non-trivial and can be deduced from the classification of indefinite forms over Z
as one can always make a form indefinite in the Grothendieck–Witt group by adding
indefinite forms.

The main result that we want to explain in this lecture course is higher version of
Proposition 1.2 and the computation of GWs

0(Z) in Example 1.3. To formulate this
we have to introduce the appropriate higher Grothendieck–Witt and Witt groups.
We will assume that the reader is familiar with the Definiton of algebraic K-theory
groups. This will also be recalled in the course.

Definition 1.4. The higher (symmetric) Grothendieck–Witt groups GWs
n(R) of R

for n ≥ 0 are the higher K-groups of the category of unimodular symmetric forms
over R. These are the homotopy groups of the (symmetric) Grothendieck–Witt spec-
trum GWs(R) defined as the K-theory spectrum of this category, i.e.

GWs(R) = {category of unimodular, symmetric forms over R}grp .

These higher Grothendieck–Witt groups are the groups that we are mainly inter-
ested in and which are generally very hard to compute. For example the case of the
integers Z was so far completely open and will be resolved as one of the main goals
of this lecture course. We will explain this below, but let us first state the first main
result, which is our higher version of Propositon 1.2.

Theorem 1.5 (#nine). For every commutative ring R there is a fibre sequence of
spectra

K(R)hC2

hyp−−→ GWs(R)→ Lscl(R) .

Here the (connective) K-theory spectrum K(R) carries the C2-action given by send-
ing a finite projective module P to its dual DP . The spectrum Lscl(R) is a spectrum
whose homotopy groups are Ranicki’s classical symmetric L-theory groups.

Let us explain the classical L-theory spectrum Lscl(R) a bit more. It is connec-
tive and its homotopy groups are the L-theory groups πn(Lscl(R)) = Lscl,n(R) which
can be described as higher analogues of the Witt group. The idea is to replace
projective modules by perfect chain complexes over R. More precisely we consider
perfect chain complexes X with Tor-amplitude in [−n, 0], i.e. those chain complexes
that can up to quasi-isomorphism be represented by a chain complex of finitely
generated, projective modules over R concentrated in homological degrees [−n, 0]
and vanishing outside of that range. There is a notion of symmetric unimodular
forms and metabolic forms in this setting: a form on such a X is given by a map
(X ⊗X)hC2 → R[−n] and the unimodularity condition is that the associated map
X[n] → DX is an equivalence. The condition of being metabolic will be explained
below. We will refer to such objects as strictly n-dimensional unimodular forms
(and strictly n-dimensional metabolic forms). Then we have

Lscl,n(R) =
{strictly n-dimensional unimodular, symmetric forms over R}

{strictly n-dimensional metabolic forms}
.

In particular we have Lscl,0(R) = W0(R) and Lscl,1(R) can also be descibed in terms

of very explict algebraic objects (so-called symmetric formations). The higher L-
groups are a priori much less accessible. But it turns out that these groups are
2-periodic (up to signs) if either 1

2 ∈ R or R is a Dedekind domain. As a result,
the higher L-groups are also very accessible and computable. Even without these
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assumptions on the ring R the L-theory is much easier to compute than K-theory
and GW-theory, mostly due to extensive and impressive work by Ranicki.

Remark 1.6. Theorem 1.5 was essentially known in the case 1
2 ∈ R by work of

Karoubi, Schlichting and Hesselholt–Madsen. Upon taking π0 it gives rise to an
exact sequence

K0(R)C2 → GWs
0(R)→Ws

0(R)→ 0

which differs from the sequence in Proposition 1.2 only by the C2-orbits, but the
exactness is equivalent.

We also note that there are similar results to Theorem 1.5 for quadratic and
antisymmetric forms, but we shall concentrate on the symmetric case in this intro-
duction.

Theorem 1.5 has a number of important consequences. The first is that we can
settle a conjecture of Berrick and Karoubi, namely we show that the map

GWs
∗(Z)→ GWs

∗
(
Z[1

2 ]
)

is a 2-local equivalence, by deducing it from the fact that in K-theory and in L-
theory we can control the fibre by Dévissage theorems.3 After inverting 2, we get
an equivalence

GWs
∗(R)[1

2 ] '
(
K∗(R)[1

2 ]
)
C2
⊕ Lscl,n(R)[1

2 ]

for every ring from Theorem 1.5 since the hyperbolic map is split after inverting 2.
Taken together these statements combined with calculations of Berrick and Karoubi
lead to the calculation of GWs

∗(Z):

Theorem 1.7. The Grothendieck–Witt groups GWs
n(Z) for n > 0 are given by

n = GWs
n(Z)

8k Z⊕ Z/2
8k + 1 (Z/2)3

8k + 2 (Z/2)2 ⊕K8k+2(Z)odd
8k + 3 Z/w4k+2

8k + 4 Z
8k + 5 0
8k + 6 K8k+6(Z)odd

8k + 7 Z/w4k+4

where w2n is the denominator of |B2n
4n |.

4

As a last application of Theorem 1.5 we can also solve the much studied homotopy
limit problem for rings of integers OK in number fields (e.g. OK = Z). Namely we
show that in this case the canonical map

GWs(OK)→ K(OK)hC2

is a 2-adic equivalence on connective covers. This is done by using L-theory to
deduce this result from the same statement where 2 is invertible in OK . This latter
problem has been solved by Berrick–Karoubi–Ostvaer.

3In fact we will prove a Dévissage theorem in GW theory
4The occuring K-groups K8k+2(Z)odd and K8k+6(Z)odd are finite, their order can be explicitly

descibed in terms of numerators of Bernoulli numbers and they are conjecturally cyclic. For n ≤
20000 (i.e. k ≤ 2500) this is known by work of Weibel and it follows in all degrees if one assumes
the Kummer–Vandiver conjecture.
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1.2. Poincaré-∞-categories (and overview of the lecture). Now we want to
explain a little bit more precisely how to define L-theory following a setup invented
by Luire based on previous work of Ranicki. This will be covered in full details in
the course and the main novel idea that leads to the new results here is to also define
a version of Grothendieck–Witt theory in the same generality.

The setup is the following: we consider stable ∞-categories C equipped with a
functor Ϙ : Cop → Sp such that the following is satisfied

(1) Ϙ(0) = 0, that is Ϙ is reduced.

(2) There is an equivalence D : Cop '−→ C such that we have a natural equivalence

Ϙ(X ⊕ Y ) ' Ϙ(X)⊕ Ϙ(Y )⊕mapC(X,DY )

compatible with the canonical biproduct maps.
(3) Ϙ sends pushouts to totalizations. This latter condition is rather technical

(and will be explained in the course) and can be ignored for now.

We shall refer to such a pair (C, Ϙ) as a Poincaré-∞-category. The reader unfamiliar
with the abstract notions (which will be explained carefully in the course) should
keep in mind the following example.

Example 1.8. The stable ∞-category C = Dperf(R) equipped with the functor

Ϙ
s(X) = mapR(X ⊗R X,R)hC2 = mapR ((X ⊗R X)hC2 , R) .

i.e. the ‘spectrum of bilinear forms’ on X forms a Poincaré-∞-category with duality
given by the usual duality of chain complexes.

Definition 1.9. Let (C, Ϙ) be a Poincaré-∞-category. A Poincaré-object (of dimen-
sion 0) in C is given by an object X ∈ C together with a map q : S→ Ϙ(X) s.t. the
induced map q̃ : X → DX is an equivalence, where q̃ is the image of q under the
map

Ϙ(X)
+∗−−→ Ϙ(X ⊕X) = Ϙ(X)⊕ Ϙ(X)⊕mapC(X,DX)→ mapC(X,DX) .

A Poincaré-object of dimension n we have instead a map Sn → Ϙ(X) such that the
associated map q̃ : X[n]→ DX is an equivalence.

Example 1.10. Consider the Poincaré-∞-category (Dperf(Z), Ϙs). Then a Poincaé
object of dimension n is by definition a perfect complex X over Z together with a
symmetric bilinear form (X ⊗Z X)hC2 → Z[−n] such that the underlying form is
unimodular in the sense that the map X[n] → DX is an equivalence. For example
an ordinary symmetric unimodular form q on a projective module P gives rise to
such a Poincaré object (P [0], q) of dimension 0.

The main example to keep in mind is the following: for an n-dimensional compact,
oriented manifold M we consider the cochain complex X := C∗(M) and equip it
with the pairing

(C∗(M)⊗Z C
∗(M))hC2

∪−→ C∗(M)
ev[M ]−−−→ Z[−n]

where [M ] ∈ Cn(M) is (a representative of) the fundamental class. Thus the induced
map is given by

∩[M ] : C∗(M)[n]→ C∗(M)

so that the pairing is unimodular by Poincaré duality.
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Definition 1.11. A Lagrangian (aka nullbordism) for an n-dimensional Poincaré
object (X, q) in (C, Ϙ) is a pair consisting of a map L → X together with a path
connecting q|L to 0 such that the sequence

L[n]→ X[n] ∼= DX → DL

with the induced nullhomotopy of the composite is a fibre sequence. In this case the
object (X, q) is called metabolic. The L-groups of (C, Ϙ) are defined as the abelian
groups

Ln(C, Ϙ) =
{Iso. classes of n-dimensional Poincaré objects in (C, Ϙ)}

{metabolic Poincaré objects}

Remark 1.12. Note that the groups Lscl,n(R) that we defined earlier do not quite

agree with the L-groups for the Poicaré-∞-category (Dperf(R), Ϙs). The difference
is that in Lscl,n(R) we imposed a further condition on where the chain complexes are

allowed to be concentrated in degrees [−n, 0]) wheres for arbitrary Poincaré objects
in a stable ∞-category we do not (and it would not even make sense). Apart from
that the notions agree. This is a very important subtlety to which we will come
back soon.

Example 1.13. Let M be a compact oriented manifold of dimension n and W be
a compact oriented null-bordism of M , that is an oriented manifold of dimension
(n+ 1) together with an identification ∂W = M . In particular we have an inclusion
i : M →W so that we get an induced map

i∗ : C∗(W )→ C∗(M)

and the restriction of the form q on C∗(M) to C∗(W ) is canonically nullhomotopic:
this restriction is by naturality given by the composition

(C∗(W )⊗Z C
∗(W ))hC2

∪−→ C∗(W )
evi∗[M ]−−−−→ Z[−n]

But [M ] ∈ Cn(M) is the image of the canonical element [W ] ∈ Cn+1(W,M) under
the connecting homomorphism and therefore comes with a prefered path to 0 when
futher mapped to C∗(W ) since we have the fibre sequence C∗+1(W,M)→ C∗(M)→
C∗(W ).

We claim that this make C∗(W ) → C∗(M) into a Lagrangian: the sequence in
question becomes

C∗(W )[n]→ C∗(M)[n] ∼= C∗(M)→ C∗(W ) .

This being a fibre sequence is then equivalent to saying that the induced map

C∗(W )[n]→ fib(C∗(M)→ C∗(W )) = C∗(W,M)[−1]

is an equivalence. This map now identifies with capping with [W ] so that this
is indeed an equivalence by Poincaré duality for manifolds with boundary (aka.
Lefschetz duality).

Together this whole discussion shows that the Poincaré objects C∗(M) for a closed
oriented manifold M is metabolic if M is a boundary, thus the respective element in
the L-group Ln(Dperf(Z), Ϙs) is trivial. In fact we get a graded group homomorphism

ΩSO
∗ → L∗(Dperf(Z), Ϙs) M 7→ C∗(M)

where ΩSO
∗ is the oriented bordism ring, i.e. ΩSO

∗ is given by the set of all closed,
oriented n-manifolds modulo the relation that ...
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Now one can even construct L-theory spectra. We do not go through the con-
struction here and only record the result, but of course we will cover that in the
course.

Proposition 1.14 (Ranicki, Lurie). For a given Poincaré-∞-category (C, Ϙ) there
exists a spectrum L(C, Ϙ) ∈ Sp whose homotopy groups are naturally given by the
L-groups, i.e. πnL(C, Ϙ) ∼= Ln(C, Ϙ).

One of the main ideas that we want to employ now is to define Grothendieck–
Witt groups in the same generality as L-groups. The idea is to define that similar
to the definition of K0 of a stable ∞-category where the Lagrangian sequences
L→ X → DL play the role of exact sequences in the definition of K0(C).5

Definition 1.15. Let (C, Ϙ) be a Poincaré-∞-category. Then we define an abelian
group

GW0(C, Ϙ) =
{Iso. classes of 0-dimensional Poincaré objects in (C, Ϙ)}

[X] = [hyp(L)] for L→ X a Lagrangian

Informally the relation identitfies metabolic and hyperbolic objects.

The quotient is taken in abelian monoids and there is an implict claim here is
that GW0(C, Ϙ) is indeed an abelian group: in fact we find that the inverse of [X, q]
is given by

[X,−q] + hyp(X[1])

which we leave as an exercise to the reader.

Definition 1.16 (Sketch). The higher Grothendieck–Witt groups GWn(C, Ϙ) are the
homotopy groups of the connective Grothedieck–Witt spectrum

GW(C, Ϙ) := Ω|Cob(C, Ϙ)|
where Cob(C, Ϙ) is the cobodism ∞-category of (C, Ϙ) which is informally given as
follows (and will of course be carefully defined in the course):

Objects are (−1)-dimensional Poincaré objects in (C, Ϙ). A morphism (X, q) to
(X ′, q′) is given by a Lagrangian (aka nullbordism) of (X ⊕X ′, q − q′). One should
think of the latter as a cobordism from (X, q) to (X ′, q′) similar to the case of mani-
folds. This∞-category is symmetric monoidal under direct sum so that Ω|Cob(C, Ϙ)|
really becomes a connective spectrum.

Note that the fact that the objects are (−1)-dimensional has the effect that the
bordisms are (in a hopefully clear intuitive sense) 0-dimensional which is the usual
convention in geometric topology: the dimension of the bordisms is what determined
the “dimension” of the bordism category.

The pleasant feature of this setup is that one has an abstract version of the fibre
sequence of Theorem 1.5.

Theorem 1.17 (#nine). For every Poincaré-∞-category we have a fibre seuqence

K(C)hC2 → GW(C, Ϙ)→ τ≥0L(C, Ϙ)
of connective spectra. Moreover the functors GW and L both satisfy universal prop-
erties similar to the ones given for K-theory of stable ∞-categories by Bliumberg–
Gepner–Tabuada: informally speaking GW is the universal additive functor and L
the universal bordism invariant functor (details in the course).

5Recall that K0(C) for a stable ∞-category is given by the monoid of isomorphism classes in C
modulo the relation that for an exact sequence A→ B → C we have [B] = [A] + [⊕[C].
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Remark 1.18. We want to remark that the actual definition of GW(C, Ϙ) that we
will cover in the course leads to a non-connective spectrum (whose connective cover
is the GW what we have defined here) and with this non-connective spectrum the
abstract theorem 1.17 holds without taking the connective cover on L-theory (the
left hand term is still connective K-theory). In particular this implies that the
negative homotopy groups of this non-connective spectrum are isomorphic to the
L-groups.

One should consider this Theorem as a blueprint for the fibre sequence we actually
care about (Theorem 1.5). Now finally the question is how one can deduce Theorem
1.5 above from the abstract Theorem 1.17. To this end one has to choose the correct
Poincaré-∞-category (Dperf(R), Ϙg). Here Ϙg is a functor

Ϙ
g : Dperf(R)op → Sp

which we call the genuine quadratic functor. It is obtained as the non-abelian
derived functor (in the sense of Dold–Puppe) of the functor of symmetric bilinear
forms on a projective module:

Projop
R → Ab P 7→ HomR(P ⊗R P,R)C2 .

We will explain this process in detail later. It is a procedure that can be applied to
non-additive functors similar to deriving in the usual context. The key is to note
that the functor Ϙg is completely different from the functor Ϙs given by ’homotopical
bilinear forms’. In particular Ϙg has much better connectivity properties which
make it possible to perform an algebraic variant of surgery to Poincaré objects for
(Dperf(R), Ϙg) resulting in the following:

Theorem 1.19. For every commutative ring R there are natural equivalences of
connective spectra

GW(R) ' GW(Dperf(R), Ϙg) (Hebestreit–Steimle)

Lscl(R) ' τ≥0L(Dperf(R), Ϙg) (#nine)

Then combining Theorems 1.17 and 1.19 immediately leads to Theorem 1.5. We
also note that the first equivalence is, if we replace our definition of GW by its
proper non-connective version, also of the form GW(R) ' τ≥0 GW(Dperf(R), Ϙg).

Remark 1.20. Let us mention again that everything said so far, with the exception
of the solution of the homotopy limit problem, even works for quadratic and ε-
symmetric forms instead of symmetric forms. This also nicely fits into the framework
of Poincaré-∞-categories and will be covered in the course as well. In particular we
will prove the surpising fact that the map GWq(Z)→ GWs(Z) is an isomorphism in
degrees ≥ 2 where the source is the Grothendieck–Witt spectrum based on quadratic
instead of symmetric forms.

2. Preliminaries on stable ∞-categories

As announced, we will assume that everyone is familiar with the notion of an ∞-
category and the notion of limits and colimits therein. We will assume knowledge of
some examples such as the ∞-category of spaces S and the ∞-category of spectra
Sp. For an ∞-category C and objects X,Y we denote the mapping space by

MapC(X,Y ) ∈ S .
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The homotopy category of C will be denoted by Ho(C) and we have that homotopy
classes of morphisms X → Y are given by

π0(MapC(X,Y )) = HomHo(C)(X,Y ) .

We will occasionally also write this as [X,Y ]. We write Fun(C,D) for the∞-category
of functors between ∞-categories C to D.

We will also sometimes use construction principles such as the homotopy coherent
nerve (which produces an∞-category N∆C from a simplicially enriched category C).
For example S is the nerve of the simplicially enriched category of Kan complexes.
We shall also use the Dwyer-Kan localization of an ∞-category C at a class of weak
equivalences in C (i.e. a set of 1-morphisms) which we denote by

C → C[W−1]

and which has is defined as the universal ∞-category in which the morphisms in W
map to equivalences.

Definition 2.1. (1) An∞-category C is pointed, if it admits an object 0 ∈ C that
is initial and terminal at the same time. In this case we have for every pair
of objects X,Y a canonical morphism 0 : X → Y defined as the factorization
through 0.

(2) A pointed ∞-category C is semiadditive if it admits finite products and finite
coproducts and for every pair of objects X,Y the canonical map(

1 0
0 1

)
: X q Y → X × Y

is an equivalence. In this case we write X ⊕ Y for the biproduct.
(3) A semiadditive∞-category C is additive if moreover for every X the shearing

map (
1 1
0 1

)
: X ⊕X → X ⊕X

is an equivalence.
(4) A pointed ∞-category C is stable if it admits finite limits and colimits and a

square in C is a pushout precisely if it is a pullback. Recall that a square is
a functor ∆1 ×∆1 → C, i.e comes with a filling homotopy. In this case we
refer to such squares as exact.

Example 2.2. The ∞-category of pointed spaces S∗ is pointed with zero object
the pointed space pt. The (nerve) of the ordinary category of abelian groups Ab is
additive. The ordinary category ProjR of finite projective modules over a ring R is
additive. The ∞-category of spectra is stable.

Definition 2.3. In every stable ∞-category Σ : C → C is invertible with inverse Ω
since the square

X //

��

0

��

0 // ΣX

is a pushout, thus a pullback so that ΩΣX ' X. For n ∈ Z and X ∈ C we will
write X[n] for the n-fold application of Σ to X. Fibre sequences in C are the same
as cofibre sequences and will simply be refered to as exact sequences.
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We note that for an additive∞-category C the homotopy category is also additive.
It then follows that it is canonically enriched over abelian groups, i.e. that [X,Y ]
carries the structure of an abelian groups and composition is bilinear.

Lemma 2.4. Every stable ∞-category is additive.

Proof. A pointed ∞-category with all finite colimits and limits is preadditive pre-
cisely if the square

0 //

��

X

(id,0)

��

Y
(0,id)

// X × Y

is a pushout. If C is stable the for preadditivity it is enough to show that it is a
pullback. To see this we consider the diagram

0 //

��

X

��

// 0

��

Y // X × Y //

��

Y

��

X // 0

.

The lower right square is a pullback and the right outer one, thus also the outer
right one. Since also the outer horizontal square is a pullback it follows that the left
hand square is one.

To see that C is additive we have to show that also the square

0 //

��

X

(id,0)

��

X
(id,id)=∆

// X ×X

is a pushout, hence a pullback. This follows by the exact same argument. �

It follows that homotopy classes of maps in a stable∞-category carry the structure
of an abelian group. We soon will see that in fact the mapping spaces MapC(X,Y )
canonically refine to mapping spectra mapC(X,Y ) for a stable ∞-category, so that
the abelian group structure on its π0 comes from this.

Definition 2.5. A functor between pointed ∞-categories is called reduced, it it pre-
serves the basepoint (note that is a property). A reduced functor between stable
∞-categories is called exact if it sends exact squares to exact squares.

Lemma 2.6. For a functor C → D between stable ∞-categories the following are
equivalent

(1) It is exact.
(2) It preserves the zero object and pushouts.
(3) It preserves the zero object and pullbacks.
(4) It preserves finite colimits
(5) It preserves finite limits.
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Proof. Clearly (1)⇔ (2)⇔ (3). Now since every finite colimit is an iterated pushout
we get that (2)⇔ (4) and dually for (3)⇔ (5). �

Only give a sketch and not an exhaustive treatment.

Proposition 2.7. Let R be associative ring 6 . Then we have an ∞-category

D(R) = N Ch(R)[q-iso−1]

obtained from the ordinary category of chain complexes by formally inverting the
quasi-isomorphisms between chain complexes. This ∞-catergory is stable and the
shift [n] is given by shifting the chain complex by n.

Proof. First of all, we consider an auxiliar ∞-category

K(R) := N Ch(R)[ch-eq−1] .

The point is that this∞-category also admits a very concrete description as follows:
consider Ch(R) as a category enriched over chain complexes using the Hom-complex.
Then apply Dold-Kan to the connective cover of these chain complexes to turn it into
a simplicially enriched category and apply the homotopy coherent nerve. This also
produces K(R) which follows from the existence of cylinder objects and Proposition
1.3.4.7. in Higher Algebra. From this second description it is (more or less) easy to
give explict formulas for pullbacks and pushouts using mapping cones. This then
implies that K(R) is stable and the suspension is given by the shift.

Now it is clear that D(R) can be obtained from K(R) by further localizing at the
quasi-isomorphisms since we have that

K(R))[q-iso−1] =
(
N Ch(R)[ch-eq−1]

)
[q-iso−1] = N Ch(R)[q-iso−1] = D(R)

where the middle equivalence follows by comparing universal properties (using that
every chain equivalence is a quasi-iso).

Now the point is that in K(R) the class if quasi-isomorphism has very nice prop-
erties: it contains all equivalences and is closed under pushouts and pullbacks. Now
we claim that in general if we have a stable ∞-category C with such a class of weak
equivalences W then C[W−1] is also stable, the functor C → C[W−1] is exact and
the mapping space in C[W−1] is given by the filtered colimit

MapC[W−1](X,Y ) ' colim−−−→X̃
'−→X

MapC(X̃, Y ) .

This fact is proven in Nikolaus-Scholze Theorem I.3.3. .
Sidenote: using the formula for the mapping space in the DK-localization, it is not

a priori clear, that this is a small space, i.e. that C[W−1] is locally small, even if C is

locally small. In our case this is true however since the ∞-category X̃
'−→ X admits

a cofinal, small subcategory. In fact one can show that the functor K(R) → D(R)
admits a left adjoint by K-projective replacement.7 This right adjoint is then fully
faithful and shows that D(R) is a full subcategory of K(R). �

The last assertion not only works for the mapping space in D(R) but also gives
formulas for derived functors: if F : K(R)op → D is a functor then the right derived
functor

RF : D(R)op → D

6From now on our rings will always be possibly non-commutative in contrast to the first section
7The K-projectives are precisely the colocal objects, i.e. this P ∈ K(R) such that MapK(P,−)

preserves quasi-isomorphisms.
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defined as the left Kan extension along K(R)op → D(R)op is given by LF (X) =

colim−−−→X̃
'−→X

F (X̃) provided D has all necessary colimits. We e.g. get the derived

Hom-complex RHom. Dually the left derived functor LF for a functor F : K(R)→
D defined as the right Kan extension can be obtained as

LF : D(R)→ D

with the formula LF (X) = lim←−X̃ '−→X
F (X̃). This for example gives the derived

tensor product.

Remark 2.8. The full subcategory K(R)q−acyc ⊆ K(R) consisting of objects that
are quasi-isomorphic to 0 is a stable subcategory in the sense that it is closed under
finite limits and colimits. A map f : X → Y is a quasi-iso precisely if its fibre lies
in this subcategory. Thus D(R) is the Verdier Quotient of K(R) by K(R)q−acyc.
Verdier Quotients will play a very important role later in the lecture.

Another way of thinking about D(R) is as the∞-category of module spectra over
the Eilenberg-MacLane spectrum HR ∈ Sp but we will not really detail that here.

When we speak about chain complexes we shall always consider them as objects
in D(R). In particular by an equivalence we shall always mean an equivalence in
D(R), which corresponds by what we have shown above to zig-zags X ← X ′ → Y
of quasi-isomorphisms in Ch(R).

Lemma 2.9. For a chain complex X ∈ D(R) the following are equivalent:

(1) It can be represented up to equivalence by a finite length chain complex of
finite projective R-modules.

(2) It lies in the smallest subcategory Dperf(R) ⊆ D(R) that contains R[0], is
stable and closed under retracts.

(3) It is dualizable in the sense that the canonical map

RHomR(X,R)⊗LR Y → RHomR(X,Y ) f ⊗ x 7→ f · x

is an equivalence for every Y ∈ D(R). Here RHomR(X,R) is considered as
a chain complex of right R-modules.

(4) It is a compact object in D(R), that is MapD(R)(X,−) : D(R)op → S com-
mutes with filtered colimits

Definition 2.10. We call chain complexes satisfying one of these equivalent condi-
tions perfect. We denote the full subcategory of those by Dperf(R) ⊆ D(R).

Proof of Lemma 2.9. (1) ⇒ (2) We note that Dperf(R) is by definition closed under
sums and retracts, thus it in particular contains P [0] for P a projective R-module
(here we have used that direct sums are formed underlying). Since it is stable, it is
also closed under shifts, thus contains P [n]. Now a chain complex of length 2

X = (...→ 0→ P → Q→ 0→ ...)

with P in degree 0 and P,Q finitely generated projective sits in a fibre sequence

Q[0]→ X → P [1]

and thus lies in Dperf(R). A similar inductive argument then shows the claim.
(2) ⇒ (3) The class of all X for which

RHomR(X,R)⊗LR Y → RHomR(X,Y ) f ⊗ x 7→ f · x
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is an equivalence for all Y is a stable subcategory closed under retracts. It clearly
contains R and thus also X.
(3)⇒ (4) The functor Map is the underlying space of RHomR(X,Y ). Thus it suffices
to show that RHomR(X,−) commutes with filtered colimits. But this is equivalent
to RHomR(X,R)⊗LR − which clearly does.
(4) ⇒ (1) We claim that every object in D(R) can be written as a filtered colimit of
finite length chain complex of finite projective R-modules. This is left as an exercise
for the reader. Thus we have a description X = colim−−−→Xi. The identity map X → X

now has to factor by compactness through one of the Xi’s so that we find that X is
a retract of this Xi. Since we are additive we get that

Xi = X ⊕ Y
for some chain complex Y . Now the claim follows from the assertion that if a binary
sum of chain complexes can be represented by a bounded finite projective complex,
then so can the summands (Lemma 15.70.5 in the Stacks project). �

Remark 2.11. The way the last assertion is shown in the stacks project is to use
another equivalent description of perfect complexes: these are precisely the com-
plexes that are pseudo-coherent (i.e. bounded below and of finite type in topology
terms) and of bounded Tor-Amplitude. Here a complex X ∈ D(R) is said to have
Tor-Amplitude in [a, b] for a, b ∈ Z if for any right R-module M we have

Hi(M [0]⊗LR X) = TorRi (M [0], X) = 0 .

for i 6∈ [a, b]. Then one also finds the following important description:
A complex X ∈ D(R) is perfect with Tor-Amplitude in [a, b] precisely if it can be

represented by a finite projective chain complex

...→ 0→ Pb → Pb−1 → . . .→ Pa → 0→ ...

supported in the interval [a, b] (see Lemma 15.70.2 in Stacks project).

Remark 2.12. There is another stable subcategory of D(R) that will a play a role
here, namely the one generated by R ∈ D(R) without allowing retracts. This will
be denoted by Dfp(R) ⊆ D(R) and objects will be called finitely presented. Being
finitely presented for a chain complex X is equivalent to being representable by a
finite lenght chain complex of finite free modules. However this is class does not
admit a description intrinsic to the ∞-category D(R) like perfect complexes.

Remark 2.13. One can also study similar notions of perfectness in spectra (or for
modules over an arbitrary ring spectrum). For example the compact objects in Sp,
denoted Spω are also characterized as the smallest stable subcategory Spfp ⊆ Sp
containing the sphere (which is then automatically closed under retracts as the re-
spective Wall finiteness obstruction vanishes). We will simply write this∞-category
as Spfin. It will play an important role in this course.

Corollary 2.14. For any two strictly perfect complexes X,Y (that is finite length,
finite projective) the mapping space MapD(R)(X,Y ) is the space underlying the Hom-

complex HomR(X,Y ). Also we have that

Dperf(R) ' Chst−perf [q.iso−1]

For any ring R the functor

D : Dperf(R)op → Dperf(Rop) X 7→ RHomR(X,R)
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is an equivalence of ∞-categories. 8

Proof. As shown in the proof of Propositon 2.9 we see that D(R) embedds fully
faithfully into K(R) as the K-projective objects. Since every finite length finite
projective complex is K-projective it follows that the mapping complex in D(R) can
be computed as the underlying space of the Hom-complex which shows the first
claim.

For the second assertion we note that the mapping spaces in the ∞-category
Chperf [q.iso−1] can be described as the space underlying the mapping chain complex
between two projective complexes. By the first part this is also the mapping space
in Dperf(R).

The third claim immediately follows since the one-categorical functor

Chst−perf(R)op → Chst−perf(Rop)

is an equivalence and preserves and reflect quasi-isos. �

Lemma 2.15. For any stable ∞-category C the the functor

Ω∞ : Funex(C,Sp)→ FunLex(C,S)

is an equivalence of ∞-categories. Here the first ∞-category denotes the ∞-category
of functors that are exact and the second denotes the ∞-category of functors that
are finite limit preserving (i.e. left exact).

Proof. Let us give a way to construct the inverse assigning to a functor F : C → S
the functor F ′ : C → Sp. Since the functor F ′ has to be exact we have to have that

Ω∞−nF ′(X) = Ω∞F (X)[n] = Ω∞F (X[n])

Thus n-th space of the spectrum F ′(X) has to be given by the space

Ω∞F (X[n])

with basepoint given by the point pt = F (0) → F (X[n]). The structure maps are
then the canonical equivalences

ΩF (X[n+ 1]) ' F (ΩF (X[n+ 1]) = F (X[n]) .

Now all of this is natural and gives the proof. Note that we have some details in the
last step omitted. �

Proposition 2.16. For every stable ∞-category C we have a unique mapping spec-
trums functor

Cop × C → Sp (X,Y ) 7→ mapC(X,Y )

which is exact in both variables separately and which refines the mapping space
MapC(X,Y ) in the sense that we have a natural (in X and Y ) equivalence

MapC(X,Y ) ' Ω∞mapC(X,Y ) .

Proof. We first claim that the functor

Ω∞ : Funbi−ex(Cop × C,Sp)→ Funbi−Lex(Cop × C,S)

8Here Rop denotes the ring obtained from R with opposite multiplication, i.e. (r, s) 7→ sr. Left
modules over Rop are the same as right R-modules, so that Dperf(Rop) can equivalently be described
by chain complexes of right R-modules.
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is an equivalence for C stable. Here the first ∞-category denotes the ∞-category
of functors that are exact in each variable separately. The second denotes the ∞-
category of functors that are finite limit preserving (i.e. left exact) in each variable
separately. This follows from the previous Lemma using that

Funbi−ex(Cop × C, Sp) ' Funex(Cop,Funex(C,Sp))

and

Funbi−Lex(Cop × C,S) ' FunLex
(
Cop,FunLex(C,S)

)
Then MapC is an element in the latter and so uniquely lifts to the former. �

Example 2.17. There is a functor

H : D(R)→ Sp

which assigns to a chain complex its ‘underlying’ spectrum. It is corepresented by
R, i.e. of the form mapD(R)(R,−). When applied to R it is given by the Eilenberg-
MacLane spectrum HR. Since limits of spectra can be detected on the underlying
spaces it follows that this functor is limit preserving.

Example 2.18. For any object M ∈ D(R) we have a functor D(R)op → Sp given by
mapD(R)(−,M). This functor is also limit preserving, i.e. sends colimits in D(R) to
limits of spectra and will be denoted by M since it is a form of Yoneda embedding for
stable ∞-categories. In fact, every limit preserving functor D(R)op → Sp is of this
form since such limit preserving functors are the same as limit preserving functors
D(R)op → S and the latter are by [?] representable. In fact we get an equivalence
between D(R) and limit preserving functors. Upon restricting to Dperf(R) this given
an equivalence

D(R) ' Funlim(D(R)op, Sp) ' Funex(Dperf(R)op, Sp)

which will be important later.

3. Quadratic functors

Now we want to discuss a class of functors called quadratic which is a special case
of Goodwillie calculus.

If we think of a stable∞-category C as an analogue of a vector space. Then exact
functors Cop → Sp are linear functions on C. We will also refer to exact functors
as linear and denote those by Funex(C). Quadratic functors Cop → Sp correspond
in this analogy to reduced polynomials of degree 2. In this section C will be stable
throughout.

Definition 3.1. For a given reduced functor Ϙ : Cop → Sp we define an associated
functor

BϘ : Cop × Cop → Sp

called the (second) cross effect of Ϙ by letting BϘ(X,Y ) be the complement of the
split inclusion

Ϙ(X)⊕ Ϙ(Y )→ Ϙ(X ⊕ Y )→ Ϙ(X)⊕ Ϙ(Y ) .

In fact we see that we immediately get equivalences

BϘ(X,Y ) ' BϘ(Y,X) .

It turns out that these equivalences are coherent in terms of the following definition.
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Definition 3.2. A symmetric functor Cop×Cop → Sp is a homotopy fixed point for
the action of C2 on Fun(Cop×Cop,Sp) or equivalently a functor (Cop×Cop)hC2 → Sp.
A functor Cop×Cop → Sp is called bilinear, if it is exact in each variable separately.
We denote symmetric bilinear functors by

Funs(C) := FunBi−exc(Cop × Cop,Sp)hC2 .

Lemma 3.3. For every Ϙ ∈ Fun(Cop, Sp) the functor BϘ : Cop × Cop → Sp admits a
canonical refinement to a symmetric functor and the canonical maps

Ϙ(X)

∆∗
��

Bϙ(X,X) // Ϙ(X ⊕X) //

∇∗
��

BϘ(X,X)

Ϙ(X)

are C2-equivariant for every X (here C2 acts trivially on Ϙ(X) and in the ’obvious’
way on the other terms).

Proof. The retract diagram

Ϙ(X)⊕ Ϙ(Y )→ Ϙ(X ⊕ Y )→ Ϙ(X)⊕ Ϙ(Y ) .

is a diagram in Fun(Cop×Cop,Sp)hC2 as we let X and Y vary, thus so is BϘ and the
maps BϘ(X,Y ) → Ϙ(X ⊕ Y ) → BϘ(X,Y ) are equivariant. Upon restriction along
the diagonal Cop → Cop ×Cop this implies the horizontal sequence. The vertical one
is clear �

We thus obtain canonical maps

BϘ(X,X)hC2 → Ϙ(X ⊕X)hC2 → Ϙ(X)→ Ϙ(X ⊕X)hC2 → BϘ(X,X)hC2

whose composition is the norm of the C2-object BϘ(X,X). 9

Definition 3.4. For a given reduced functor Ϙ : Cop → Sp we consider the cofibre

BϘ(X,X)hC2 → Ϙ(X)→ LϘ(X)

which is a functor LϘ : Cop → Sp. We call the functor Ϙ quadratic if LϘ is linear
and BϘ is bilinear. In this case we refer to LϘ as the linear part of Ϙ. We denote
the full subcategory of quadratic functors by

Funq(C) ⊆ Fun(Cop,Sp) .

A quadratic functor Ϙ is called homogenous if LϘ = 0.

Remark 3.5. A functor Ϙ is quadratic, precisely if it is reduced and 2-excisive in the
sense of Goodwillie, i.e. sends strongly coCartesian 2-cubes to Cartesian 2-cubes.
This easily follows from standard facts about Goodwillie calculus and cross effects.

Example 3.6. Any exact functor Ϙ : Cop → Sp is quadratic. To see this note that
in this case BϘ = 0 (which is in particular bilinear) and thus LϘ = L, which is linear.

9Recall that for every C2-spectrum Z the norm is the map ZhC2 → ZhC2 which informally sends
z to z + σz.
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Example 3.7. Let B be a symmetric bilinear functor B : Cop × Cop → Sp. Then
we consider the functors

Ϙ
q
B(X) = B(X,X)hC2 and Ϙ

s
B(X) = B(X,X)hC2

The q here is for quadratic and the s for symmetric (we will understand this notation
later). We claim that both of these functors are quadraic. In the first case we get
that

Ϙ
q
B(X ⊕ Y ) = B(X ⊕ Y,X ⊕ Y )hC2

= B(X,X)hC2 ⊕ (B(X,Y )⊕B(Y,X))hC2
⊕B(Y, Y )hC2

d = ϘqB(X)⊕B(X,Y )⊕ ϘqB(Y )

so that B
Ϙ
q
B

= B. It follows that L
Ϙ
q
B

which then shows that ϘqB is quadratic. For

the symmetric functor we also find with the same argument that BϘsB = B and thus
that

LϘsB (X) = ϘsB(X)/ϘqB(X) = B(X,X)tC2 .

To fact that ϘsB is quadratic then follows from the fact that the functor B(X,X)tC2

is exact in X. This is a standard argument which we will give below after the
examples, see Corollary 3.13.

Example 3.8. Now we consider a subexample of the last example, which will be the
most important example for this lecture. Let us first assume that R is commutative.
Then we consider the symmetric bilinear functor on Dperf(R) given by

B(X,Y ) = mapDperf(R)(X ⊗LR Y,R)

In this case the last example leads to the functors

Ϙ
q
R := ϘqB and Ϙ

s
R := ϘsB .

Definition 3.9. A ring with involution is given by a ring together with an isomor-
phism σ : R→ Rop such that σ2 = id.

Example 3.10. Every commutative ring R is canonically a ring with involution
where σ = id. We want to generalize Example 3.8 to the case of rings with involu-
tions. The involution can be used to turn right modules (aka Rop-modules) into left
R-modules. In particular the R−R-bimodule R can be consider as a R⊗R-module.
Explicitly the left R⊗R-action is given by

(r ⊗ s) · t 7→ rtσ(s).

Moreover this module is fixed under the flip action, i.e. the restriction along τ :
R ⊗ R → R ⊗ R is isomorphic to itself in a symmetric way, i.e. a homotopy fixed
point for the flip action on D(R ⊗ R). Now we consider the symmetric biliinear
functors

B(X,Y ) = mapDperf(R⊗LZR)(X ⊗Z Y,R) ∈ Sp .

then we also get quadratic functors

Ϙ
q
R, Ϙ

s
R : Cop → Sp .

Now we want to give the argument for the fact that for any symmetric bilinear
functor B ∈ Funs(C) the functor

B(X,X)tC2
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is exact. We first observe that this functor is obviously additive in since

B(X ⊕ Y,X ⊕ Y )tC2 = B(X,X)tC2 ⊕ (B(X,Y )⊕B(Y,X))⊕B(Y, Y )tC2

= B(X,X)tC2 ⊕B(Y, Y )tC2 .

Now we want to establish a criterion to deduce that an additive functor Cop → Sp
is exact to show that B(X,X)tC2 is indeed additive. This will be useful for later
(even though it might be a bit overkill here). We will first need some terminology:
recall that a simplicial object X• : ∆op → C is called n-skeletal or n-dimensional if
it is equivalent to the left Kan extension of its restriction to ∆op

≤n ⊆ ∆op. In this
case the colimit colim∆op X• is equivalent to the colimit

colim∆op
≤n

(
X•|∆op

≤n

)
of the restriction of X• to ∆op

≤n. For n = 1 the colimit over ∆op
≤1 is called a re-

flexive coequalizer and can thus we computed as the colimit over the associated
1-dimensional simplicial object. Every pushout square

A //

��

B

��

C // D

gives rise to a reflexive coqualizer B ⊕A⊕ C ⇒ B ⊕ C.

Definition 3.11. Let C be a stable ∞-category. We say that a functor preserves
finite totalizations if for any finite dimensional simplicial object X• : ∆op → C the
canonical map

F (colim∆op X•)→ lim
∆
F (X•)

is an equivalence. We say it sends pushouts to totalizations if this is true for any
1-dimensional simplicial object induced by a pushout square.

In other words: it sends a coequalizer diagram

X1 ⇒ X0 → X−1

to a totalization

F (X−1)→ F (X0)⇒ F (X1)→ F (X1 ⊕X0 X1)→ ... .

Lemma 3.12. For an additive functor F : Cop → Sp TFAE

(1) It is exact
(2) It preserves finite totalizations
(3) It sends pushouts to totalizations.

Proof. Assume F is exact. Then the diagram F (X•) for X• n-dimensional is equiv-
alent to the right Kan extension of its restriction to ∆≤n. This follows from the fact
that F preserves finite limits and that these Kan extensions are pointwise given by
finite limits (as one can see from the pointwise formulas). Thus the limit of F (X•)
is the same as the limit of its restriction to ∆≤n. Thus the claim that F preserves
finite totalizations follows from the fact that ∆≤n is finite and F preserves finite
limits
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Conversely assume that F is additive and preserves finite totalizations. We con-
sider a pushout square

A //

��

B

��

C // D

in C. We an write D = B ⊕A C as the geometric realization of the 1-dimensional
simplicial object

. . .→ B ⊕A⊕A⊕ C // B ⊕A⊕ C // B ⊕ C .

It follows that F (D) is the totalization of the simplicial object

F (B)⊕ F (C)→ F (B)⊕ F (A)⊕ F (C)→ ...

i.e. the pullback F (B)×F (A) F (C) which shows exactness. �

Corollary 3.13. For every symmetric bilinear functor B ∈ Funs(C) the associated
functor

Cop → Sp X 7→ B(X,X)tC2

is exact.

Proof. For a 1-dimensional simplicial object X• ∈ C we see that the diagonal cosim-
plicial object

n 7→ B(Xn, Xn)

is 2-dimensional (considered as a simplicial object in (SpBC2)op) with the same
argument that shows that the product of two 1-dimensional simplicial sets is 2-
dimensional. Moreover its limit is given by

lim
n
B(Xn, Xn) = lim

i,j
B(Xi, Xj) = B(colimXi, colimYi)

Thus applying any exact functor to it commutes with this totalization. Applying
this to (−)tC−2 shows the claim. �

Proposition 3.14. Let Ϙ : Cop → Sp be a reduced functor for which BϘ is biadditive.
10 Then TFAE

(1) It is quadratic
(2) It preserves finite totalizations
(3) It sends pushouts to totalizations.

Proof. For (1)⇒(2) observe that if Ϙ is quadratic, then it sits in the exact sequence

B(X,X)hC2 → Ϙ(X)→ LϘ(X)

so to see that it preserves finite totalizations it suffices to show that B(X,X)hC2

and LϘ(X) preserve finite totalizations which follows as in the last proof.
(2)⇒(3) is clear and for (3)⇒(1) assume that Ϙ sends pushouts to totalizations.

Then also the cross-effect has this property in each variable separately as the for-
mulas for it ist just compatible with totalizations. It follows that the cross-effect is
bilinear by applying Lemma 3.12 in each variable separately. As before we then see

10This is the definition of being quadratic in the sense of Eilenberg-MacLane which makes sense
for semi-additive ∞-categories
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that B(X,X)hC2 sends reflexive coequalizers to totalizations so that also LϘ does.
Moreover we have that LϘ is additive since

LϘ(X ⊕ Y ) =
Ϙ(X ⊕ Y )

B(X ⊕ Y,X ⊕ Y )hC2

=
Ϙ(X)⊕B(X,Y )⊕ Ϙ(Y )

B(X,X)hC2 ⊕B(X,Y )⊕B(Y, Y )hC2

= LϘ(X)⊕ LϘ(Y ) .

Thus L : Cop → Sp is exact by Lemma 3.12. �

We want to end this section by giving a ‘classification’ of quadratic functors.

Lemma 3.15. (1) The functor

Funq(C)→ Funs(C)
Ϙ 7→ BϘ

admits both adjoints given by B 7→ ϘqB and B 7→ ϘsB (see Example 3.7) and
they are fully faithful.

(2) The full inclusion

Funex(Cop, Sp) ⊆ Funq(C)
admits both adjoints. The left adjoint is given by Ϙ 7→ LϘ and the right
adjoint by the fibre of Ϙ(X)→ ϘsBϘ(X) = BϘ(X,X)hC2.

Proof. We first observe that the functor Funq(C)→ Funs(C) induces an equivalence
of ∞-categories when restricted to the full subcategory of homogenous functors
with inverse given by B 7→ ϘqB. The assigment Funq(C)→ Funq(C) given by Ϙ 7→ ϘqBϘ
then defines an endofunctor L of Funq which comes with a natural transformation
L → id which is idempotent, i.e. the two induced maps L2 → L are equivalence
and homotopic to each other. Thus it follows that it is a colocalization (by HTT
Proposition 5.2.7.4) and thus the left adjointness. A similar argument works for the
right adjoint which shows the first part of the claim.

For the second part we note that we have for Ϙ quadratic and L linear a fibre
sequence

Map(LϘ, L)→ Map(Ϙ, L)→ Map(ϘqBϘ , L)

from the fibre sequence Bq
Ϙ
→ Ϙ→ LϘ. Thus the claim follows from the fact that

Map(ϘqBϘ , L) ' Map(BϘ, BL) = Map(BϘ, 0) = 0.

The right adjoint works similary, except we first have to observe that the fibre of

Ϙ(X)→ BϘ(X,X)hC2

is indeed linear, as its cross effect vanishes. �

Remark 3.16. Such a setting, induced by an exact functor π : D → C between
stable ∞-categories which admits both adjoints L and R which are fully faithful
(equivalently, one of them is fully faithful) is called a stable recollement. Then the
inclusion of the kernel ker(π) ⊆ C also admits both adjoints given by

X 7→ cofib(LπX → X) X 7→ fib(X → RπX).

Moreover D → C is a Dwyer-Kan localization, in fact it is the Verdier Quotient
D/ ker(π). We will come back to that when discussing split Verdier quotients later.
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For any quadratic functor Ϙ we have a pullback square (a sort of ‘fracture square’)

Ϙ(X)

��

// LϘ(X)

��

B(X,X)hC2 // B(X,X)tC2 .

in wich the right vertical map is the map induced from the left hand map, but
can also be described using that B(X,X)tC2 is linear. Thus any quadratic functor
Ϙ is determined by its cross effect BϘ ∈ Funs(C), its linear part LϘ ∈ Funex(C)
and the natural map LϘ(X)→ B(X,X)tC2 , considered as a morphism in Funex(C).
Conversely any such triple determines a quadratic functor with the respective linear
and bilinear part. We can therefore deduce the following classification of quadratic
functors (which is a special case of a more general result from Goodwillie calculus):

Corollary 3.17. The ∞-category of quadratic functors is equivalent to the ∞-
category of triples B ∈ Funs(C), L ∈ Funex(C) and L → BtC2 in Funex(C). More
precisely we have a pullback

Funq(C) //

B

��

(Funex(C))∆1

ev1

��

Funs(C) −tC2
// Funex(C) .

of ∞-categories.

4. Poincaré-∞-categories

Definition 4.1. A symmetric bilinear functor B ∈ Funs(C) is non-degenerate if for
any Y ∈ C the functor

Cop → Sp X 7→ B(X,Y )

is representable by an object DY ∈ C, i.e. we have a natural equivalence B(X,Y ) '
mapC(X,Y ).

By the stable Yoneda lemma the object DY is, if it exists, well-defined and for
any Y we get a canonical map Y → D(DY ) corresponding under the equivalence

mapC(Y,D(DY )) ' B(Y,DY ) ' B(DY, Y ) ' mapC(DY,DY )

to the identity.

Definition 4.2. • We say that B ∈ Funs(C) is perfect if it is non-degenerate
and for every Y the map Y → D(DY ) is an equivalence.
• We say that a quadratic functor Ϙ : Cop → Sp is non-degenerate or perfect it

its bilinear part is.
• A Poincaré ∞-category is a pair consisting of a (small) stable ∞-category C

and a perfect quadratic functor Ϙ : Cop → Sp.

Lemma 4.3. For a non-degenerate symmetric bilinear functor B ∈ Funs(C) the
duality assembles into a functor D : Cop → C such that we have a natural (in X and
Y ) equivalence

B(X,Y ) ' mapC(X,DY )

and D is an equivalce of ∞-categories iff B is perfect.



22 THOMAS NIKOLAUS

Proof. We observe that the stable yoneda embedding, given by the composition

C → FunLex(Cop,S) ' FunEx(Cop, Sp)→ Fun(C,Sp)

is fully faithful, since the ordinary Yoneda embedding is. As a result, postcomposi-
tion exhibits a full inclusion

Fun(Cop, C) ' Fun(C,Fun(Cop, Sp)) ' Fun(Cop × Cop,Sp)

and an object B ∈ Fun(Cop×Cop,Sp) lies in the image precisely if it does pointwise.
This proves the first assertion.

For the second claim we note that the natural equivalence

MapCop(DX,Y ) = MapC(Y,DX) = B(Y,X) ∼= B(X,Y ) = MapC(X,DY ) .

shows that Dop : C → Cop is right adjoint to D : Cop → C. The unit and the
counit of this adjunction are both given by the map X → D(DX) considered as
a transformation idC → D ◦ Dop and Dop ◦ D → idCop . Thus D is an equivalence
precisely if unit and counit are equivalences which shows the claim. �

Example 4.4. Let R be a ring with involution σ. Then the symmetric bilinear
functor B ∈ Funs(DperfR) defined in 3.10 given by

B(X,Y ) = mapDperf(R⊗ZR)(X ⊗Z Y,R)

is perfect. To see this simply note that

mapDperf(R⊗ZR)(X ⊗Z Y,R) ' mapDperf(R)(X,DY )

for DY = resσRHomR(Y,R) and for perfect modules the functor D is an equivalence
as we have seen earlier (Corollary 2.14). In particular we get that C = Dperf(R) with
Ϙ
s
R and ϘqR form Poincaré-∞-categories.

Remark 4.5. One could actually more generally consider those object X ∈ D(R)
which are reflexive instead of perfect, i.e. where X → D(DX) is an equivalence.
For R = Z this class contains for example the non-perfect modules

⊕
n∈Z Z[n] and

C∗(M) for M a space of finite type.

Example 4.6. We consider the ∞-category Spfin. This can be equipped with the
following three perfect quadratic functors

Ϙ
q
S → Ϙ

u
S → ϘsS

all of which have the same underlying symmetric bilinear functor

B(X,Y ) = mapSpfin(X ⊗S Y,S) = DX ⊗DY

with duality given by Spanier-Whitehead duality X 7→ DX = map(X,S). The
first and the last are simply induced by the symmetric bilinear functor by taking
homotopy orbits and homotopy fixed points as in Example 3.7. That is we have
LϘq = 0 and LϘs(X) = B(X,X)tC2 .

The middle one ϘuS , called the universal quadratic functor, is more interesting. Its
linear part is given by

LϘu(X) := mapS(X,S) = DX .

In order to define Ϙu we thus have to provide a natural map

DX = LϘu(X)→ B(X,X)tC2 = (DX ⊗S DX)tC2 .
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There is a canonical such map called the Tate-diagonal of DX which can be con-
structed as follows: such natural transformations are determined by their value on
the sphere S by Yoneda (since the target is exact) and thus are given by maps
S→ StC2 . We simply define this map as the composite

S p∗−→ SBC2 = ShC2 → StC2

where p : BC2 → pt. Concretely the quadratic functor ϘuS is thus given by the
pullback

Ϙ
u
S(X) //

��

DX

��

(DX ⊗S DX)hC2 // (DX ⊗S DX)tC2

Remark 4.7. For those who know equivariant homotopy theory: the functor Ϙu

can also be written by the genuine fixed points

Ϙ
u
S(X) = (DX ⊗DX)C2

where we view DX⊗SDX as a genuine spectrum given by the Hill-Hopkins-Ravenel
norm of DX (from the trivial group to C2). Such a quadratic functor with this
description also appears in work of Weiss-Williams (in a dual setting but even more
generally for parametrised spectra over some base). There is also the functor

Ϙ
qu
S (X) = D((X ⊗S X)C2)

with the same bilinear part and whose linear part is given by

L
Ϙ
qu
S

(X) = mapSpfin

(
X, cofib(ShC2

(Nm,p∗)−−−−−→ ShC2 ⊕ S)
)
.

(it is much easier to describe the right adjoint linear part which is given by DX).
One should think of Ϙu as a ‘genuine’ version of the symmetric functor and Ϙu as a
‘genuine’ version of the quadratic functor.

Example 4.8. For any given Poincaré-∞-category (C, Ϙ) consider the shift Ϙ[n]
defined as

Ϙ[n](X) = Ϙ(X)[n] .

This is again a quadratic functor whose bilinear part is given by

BϘ[n](X,Y ) = BϘ(X,Y )[n] = Map(X, (DY )[n])

so that the associated duality is D[n]. This is also an equivalence since shifting is
an equivalence. We see that (C, Ϙ[n]) is also Poincaré.

Example 4.9. For a given stable ∞-category C we consider the pair Hyp(C) =
(C × Cop, Ϙhyp) where

Ϙhyp(X,Y ) = mapC(X,Y )

is the mapping spectrums functor. We claim that Hyp(C) is Poincaré. To see this
we note that

mapC(X,Y ) = mapC×Cop((X,Y ), (Y,X))hC2

so that mapC is in fact homogenous with associated duality given by (X,Y ) 7→
(Y,X).
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Example 4.10. For any Poincaré-∞-category (C, Ϙ) we define a pair Met(C) =

(C∆1
, Ϙmet) whose underlying∞-category is the arrow category of C and whose qua-

dratic functor is given by

Ϙmet(L→ X) = fib (Ϙ(X)→ Ϙ(L)) .

This functor is again quadratic with associated perfect duality given by

Dmet(L→ X) = D(X/L)→ DX .

The fact that it is quadratic simply follows from the fact that it is the fibre of
quadratic functors. The cross effect can then be computed as the fibre of the cross
effects:

Bmet(L→ X,L′ → X ′) = fib
(
BϘ(X,X

′)→ BϘ(L,L
′)
)

= fib
(

mapC(X,DX
′)→ mapC(L,DL

′)
)

= fib
(

mapC∆1 (L→ X,DX ′ → DX ′)→ mapC∆1 (L→ X,DL′ → 0′)
)

= mapC∆1 (L→ X,fib(DX ′ → DL′)→ DX ′)

= mapC∆1 (L→ X,D(X ′/L′)→ DX ′) .

which shows the claim.

5. Poincaré objects

Let us recall Definition 1.9 from the Introduction:

Definition 5.1. Let (C, Ϙ) be a Poincaré-∞-category. A Poincaré-object (of dimen-
sion 0) in C is given by an object X ∈ C together with a map q : S→ Ϙ(X) s.t. the
induced map q̃ : X → DX is an equivalence, where q̃ is the image of q under the
map

Ϙ(X)
+∗−−→ Ϙ(X ⊕X) = Ϙ(X)⊕ Ϙ(X)⊕mapC(X,DX)→ mapC(X,DX) .

For a Poincaré-object of dimension n we have instead a map Sn → Ϙ(X) such that
the associated map q̃ : X[n]→ DX is an equivalence. In general we shall refer to q
as a Ϙ-form on X (even if it is not Poincaré).

Remark 5.2. Let us note that a Poincaré object for (C, Ϙ) of dimension n is the same
as a Poincaré object of dimension 0 for the Poincaré-∞-category (C, Ϙ[−n]). Thus we
will henceforth mostly speak about Poincaré objects and drop the dimension (which
will then automatically be zero).

As indicated above, one should think of the element q as a form on X. To make
this precise let us work that out in some examples.

Construction 5.3. Let R be a ring with involution σ and consider the Poincaré-
∞-category (Dperf(R), ϘsR). Then for a Poincare object (X, q), or more generally any
object X with a map S→ ϘsR(X), we get an induced σ-symmetric, bilinear form on
the R-module H0(X), that is a map

β : H0(X)⊗Z H0(X)→ R
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such that β is linear in the first coordinate and β(x, y) = σβ(y, x). To see this we
simply look at the induced map

π0(map(X ⊗Z X,R)hC2)→ π0(map(X ⊗Z X,R))C2

H0−−→ Hom(H0(X ⊗Z X), R)C2

→ Hom(H0X ⊗Z H0X,R)C2

And the latter is the associated form. We also note that the induced map q̃ : X →
DX induces the respective map

H0X → H0(DX)→ D(H0X) = HomR(H0X,R)

which might in general not be an isomorphism. But if we for example work over
a field then the latter map is of course an isomorphism. So that in this case the
induced σ-symmetric bilinear form on H0(X) is unimodular. Of course we could
have taken H∗ instead of H0 and would get a graded σ-symmetric form in H∗(X).

If X = P [0] for a projective module over R (or more generally X is any connective
chain complex) then all of the maps above are isomorphisms so that we get that a
connective Poincaré object for (Dperf(R), ϘsR) is really the same as a unimoduar,
σ-symmetric form on H0(X).

Similarly, if we have a Poincaré object of dimension n then we will get an associ-
ated form

H∗X ⊗H∗(X)→ R[−n]

which for example gives for n even a form on the middle dimensional homology
Hn/2(X) (there are some signs showing up here).

Example 5.4. Recall Example 1.10 from the introduction, namely that for an
n-dimensional closed, oriented, compact manifold M we get that C∗(M,R) is a
Poincaré object of dimension n in (Dperf(Z), ϘsR). For R = Q we get an induced
unimodular form on the middle dimensional homology, the intersection form.

Since every quadratic functor on Dperf(R) with the standard bilinear part has a
map to ϘsR so that we get in all cases such an induced form on the homology. But we
will more closely look at the functor ϘqR and justify why it is called ‘quadratic’. The
reason is that it is related to quadratic forms on modules as we will explain now.

For simplicitly we restrict to the case of commutative rings. Recall that a qua-
dratic form on an R-module M is given by a map (of sets)

q : M → R

such that q(rm) = r2m and such that β(m,n) = q(m+n)− q(m)− q(n) is bilinear.
The latter is clearly symmetric. If 2 is a unit in the ring R then we see that we we

can recover q from β as q(m) = β(m,m)
2 , so that over rings in which 2 is invertible

we find that quadratic forms and symmetric bilinear forms are the same. In fact, if
2 is a unit in R (even for a ring with involution) we also get that the norm map

Ϙ
q
R → Ϙ

s
R .

is an equivalence. We note that for any given objectX ∈ Dperf(R) andR-commutative
we have a canonical map

Ϙ
q
R(X) = mapDperf(R)(X ⊗R X,R)hC2 → mapD(R)

(
(X ⊗R X)hC2 , R

)
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which is the canonical interchange map applied to the functor mapDperf(R)(−, R).

In fact, we have the following result (which we will not really use but prove for
concreteness).

Lemma 5.5. This map is an equivalence of spectra.

Proof. We note that both functors

X 7→ mapDperf(R)(X ⊗R X,R)hC2

and
X 7→ mapD(R)(X ⊗R X,R)hC2

are quadtratic with cross-effect given by the usual bilinear functor B(X,Y ) =
mapDperf(R)(X ⊗R X,R)hC2 . Thus we only have to compare the linear parts. But

the linear parts will agree on Dperf(R) if they agree for X = R so that it suffices to
check that the map above is an equivalence for X = R. But there the map is given
by the canonical map

RhC2 → mapD(R)(R
hC2 , R)

from the R-homology of BC2 to the dual of the cohomology, which is an equivalence
since BC2 is of finite type (in fact, one can also simply compute both sides). �

Now for a given Poincaré object (X, q) in (Dperf(R), ϘqR) we consider the associated
map

(X ⊗R X)hC2 → R

which thus gives rise to a map obtained by applying H0

H0

(
(X ⊗R X)hC2

)
→ R .

Lemma 5.6. For any X the assignment

q : H0(X)→ H0

(
(X ⊗R X)hC2

)
given by the composition

Ω∞X
∆−→ (Ω∞X × Ω∞)hC2 → Ω∞

(
(X ⊗R X)hC2

)
is a quadratic form on H0(X) with values in H0

(
(X ⊗R X)hC2

)
.

Proof. We have to show that q(rx) = r2q(x) for r ∈ π0(R) and that

β(x, y) = q(x+ y)− q(x)− q(y)

is bilinear.
The map Ω∞X → Ω∞ (X ⊗R X)hC2 is natural in X. In particular for every

r ∈ Ω∞R the morphism lr : X → X obtained by left multiplication by r the
diagram

Ω∞X Ω∞ (X ⊗R X)hC2

Ω∞X Ω∞ (X ⊗R X)hC2

Ω∞lr Ω∞(lr⊗lr)hC2

commutes. But by bilinearity the right vertical map is equivalent to left multipli-
cation with r2 on the R-module (X ⊗R X)hC2 . Upon applying π0 this implies the
equality q(rx) = r2q(x).
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Similarly, applying naturality for the fold map + :: X ⊕ X → X we find a
commutative square

Ω∞(X ⊕X) Ω∞
(
(X ⊕X)⊗R (X ⊕X)

)hC2

Ω∞X Ω∞ (X ⊗R X)hC2 .

Ω∞+ Ω∞(+⊗+)hC2

Under the distributivity equivalence(
(X ⊕X)⊗R (X ⊕X)

)hC2 ' (X ⊗R X)hC2 ⊕ (X ⊗R X)⊕ (X ⊗R X)hC2

the right vertical map (+⊗+)hC2 in this square is given by (id,Nm, id) where Nm
is the norm map X ⊗R X → (X ⊗R X)hC2 . Thus applying π0 we get the identity

q(x+ y) = q(x) + (π0Nm)(x⊗ y) + q(y)

or equivalently β(x, y) = (π0Nm)(x ⊗ y). But Nm is R-linear which implies the
claim.

�

Proposition 5.7. For every element S → ϘqR(X) with X ∈ Dperf(R) we get an
induced quadratic form on H0(X). If X = P [0] for P f.g. projective then this
induces an isomorphism

π0Ϙ
q
R(X)→ { Quadratic forms on P } .

Proof. The first claim just follows from the construction given before. For the latter
we note that if P is projective then also P ⊗R P is projective and we have that

mapD(R)(P ⊗R P,R) = HomR(P ⊗R P,R)

is concentrated in degree zero and given by the abelian group of bilinearforms on P
withe the C2-action by flipping. Thus we find that

π0Ϙ
q
R(P [0]) = HomR(P ⊗R P,R)C2 = {Bilinear forms on P}C2

Unwinding the constructions we see that the map in question from the set of bilinear
forms to quadratic forms sends a bilinear form γ to the associated quadratic form

qγ(X) = γ(x, x) .

Thus to show the claim we have to verify that every quadratic form on P is of this
form and that two bilinear forms γ and γ′ give rise to the same quadratic form
precisely if the represent the same orbit.

We can assume without loss of generality that P is free and then represent bilinear
forms by matrices. For the last assertion assume that γ is such that

γ(x, x) = 0

for all x ∈ P . This means that γ is represented by a skew symmetric matrix. But
then we can write it as the antisymmetrization of a bilinear form, e.g. the upper
triangular part. This shows that

{Bilinear forms on P}C2 → { Quadratic forms on P }
is injective. For surjectivity we have to argue that every quadratic form is obtained
from a bilinear form γ represented by a matrix A. To see this consider arbitrary
q and let β be its polarization represented by a symmetric matrix B. We now set
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A to be the matrix whose upper triangular part agrees with B and which on the
diagonal is given by q. Then we have that A+AT = B, thus the quadratic form qγ
has the property that its associated bilinear form agrees with q on a basis and that
the polarizations agree. Thus by the formula for polarizations they agree. �

Remark 5.8. It is an interesting fact, due to Eilenberg-MacLane, which uses similar
methods, that for an abitrary abelian groups M we have that

H4(K(A, 2),Z) = {quadratic forms on A}.

One can also show that this group is isomorphic to Hom((A⊗A)C2 ,Z) for any abelian
group A and not just projective ones. We do not know however if over arbitrary
rings R and arbitrary modules M the canonical map

Hom((M ⊗RM)C2 , R)→ {R-linear quadratic forms on M}.

is an isomorphism. For M = P finitely generated projective it follows form the
previous result (with some translations).

Remark 5.9. If one works with a ring with involution (R, σ) instead of commutative
rings then one gets for every ϘqR-form on X a quadratic form on π0(X) with values
in R/(x− σx).

Remark 5.10. There was a very intersting question by Søren Galatius: what is
π1Ϙ

q
R(P [0]) for P finitely generated projective, i.e. when we know that π0 is given

by quadratic forms. We then find that this is given by the second group homology
of C2-with values in the module of bilinear forms on P . This is given by the kernel
of the map 1− σ module the cokernel of 1 + σ, thus by the Quotient

π1Ϙ
q
R(P [0]) =

{Symmetric bilinear forms on P}
{Quadratic forms on P}

.

In fact every odd homotopy group is isomorphic to that and the even ones, except
for the zero’th are given by

π2nϘ
q
R(P [0]) =

{Antisymmetric bilinear forms on P}
{Antisymmetrizations of bilinear forms}

= 0

We do not really know what this ‘means’.

Example 5.11. A Poincaré object in Hyp(C) is the same as a pair of objects (X,Y )
of C together with an equivalence X → Y . This is essentially the same as an object
X ∈ C.

Now after shedding some light on the functors ϘqR and ϘsR we shall start to develop
some theory.

Construction 5.12. (1) For a pair (X, q) and (X ′, q′) of Poincaré objects we
consider the direct sum X ⊕X ′ equipped with the form q + q′ ∈ Ϙ(X ⊕X ′)
induced under the canonical map Ϙ(X)⊕ Ϙ(X ′)→ Ϙ(X ⊕X ′). The induced
map is

q̃ + q′ = q̃ + q̃′ : X ⊕X ′ → DX ⊕DX ′

so that it is also Poincaré.
(2) For a Poincaré object (X, q) we have the Poincaré object (X,−q) with ad-

junct map X → DX given by −q̃.
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(3) For a given Poincaré-∞-category (C, Ϙ) and X ∈ C we consider

hyp(X) := X ⊕DX
with the form q given by the image of the identity under the map

(1) mapC(X,X) = B(X,DX)→ Ϙ(X ⊕DX).

We find that the adjunct map q̃ : X ⊕DX → DX ⊕X is given by the usual

hyperbolic matrix

(
0 1
1 0

)
which can be seen as follows: the map (1) can

also be factored as

B(X,DX)→ B(X,X)hC2 ⊕B(X,DX)⊕B(DX,DX)hC2

= B(X ⊕DX,X ⊕DX)hC2

→ Ϙ(X ⊕DX)

so that postcomposing the map (1) with the map

Ϙ(X ⊕DX)→ B(X ⊕DX,X ⊕DX)hC2

is simply the norm.

Definition 5.13. A Lagrangian (aka nullbordism) for an n-dimensional Poincaré
object (X, q) in (C, Ϙ) is a pair consisting of a map L → X together with a path
connecting q|L to 0 such that the sequence

L[n]→ X[n] ∼= DX → DL

with the induced nullhomotopy of the composite is a fibre sequence. In this case the
object (X, q) is called metabolic.

Lemma 5.14. Metabolic Poincaré objects are essentially the same as Poincaré ob-
jects in Met(C, Ϙ).

Proof. We treat the case of dimension 0. A Ϙmet-form in Met(C) on an object L→ X
is simply given by a Ϙ-form on on the X and a nullhomotopy of the restriction to
L. Then we simply have to check that the induced map form L→ X into the dual
D(L/X)→ DX is an equivalence. But this simply means thatX is a Poincaré object
(i.e. X ' DX) and that the L is a Lagrangian since L ' D(X/L) is equivalent to
X/L ' DL. �

We finish this section by giving a definition of maps between Poincaré-∞-categories.
This are rigged to preserve Poincaré objects.

Definition 5.15. A map of Poincaré categories (C, Ϙ) and (C′, Ϙ′) consists of an
exact functor F : C → C′ together with a natural transformation η : Ϙ→ Ϙ′ ◦ F such
that for every object X ∈ C a certain map

F (DX)→ D(FX)

induced from η is an equivalence in C. This map is the image of the identity under
the map

mapC(DX,DX) = BϘ(X,X)
Bη−−→ B

Ϙ
′(F (DX), FX) = mapC′(F (DX), D(FX)) .

Clearly we find that for a Poincaré object (X, q) in (C, Ϙ) the induced object
(FX, η(q)) is also Poincaré, one only has to check that the equivalence F (DX) ∼=
D(FX) is compatible with adjunct maps.
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Example 5.16. For a ring with involution we can consider the map

(Dperf(R), ϘqR)→ (Dperf(R), ϘsR)

given by the identity functor and the transformation η induced by the map ϘqR →
Ϙ
s
R. This preserves the duality (in fact is an equivalence on bilinear parts). The

assignment on Poincaré objects is the assignment of symmetric forms to quadratic
forms. More generally maps of Poincaré categories that are the identity on objects
always have to preserve the bilinear part and thus can only change the linear part.

Example 5.17. For a given Poincaré-∞-category C there is a functor

Hyp(C)→ C (X,Y ) 7→ X ⊕DY .

This comes with a natural transformation

η : Ϙhyp(X,Y ) = mapC(X,Y )→ Ϙ(X)⊕mapC(X,Y )⊕ Ϙ(DY ) = Ϙ(X ⊕DY )

and the induced map is the equivalence DX ⊕ Y ' D(X ⊕DY ). The induced map
on Poincaré objects sends X ∈ C to the hyperbolic object hyp(X).

Example 5.18. Met(C, Ϙ)→ C given by evaluation at the target refines to a functor
of Poincaré objects. The induced map sends L → X simply to X. There is also a
functor

Hyp(C)→ Met(C) (X,Y ) 7→ (X → X ⊕DY )

and we have that

Ϙmet(X → X ⊕DY ) = fib(Ϙ(X ⊕DY )→ Ϙ(X)) = mapC(X,Y )⊕ Ϙ(DY ) .

We have an inclusion Ϙhyp(X,Y ) → Ϙmet(X → X ⊕DY ) and this defines a map of
Poincaré-∞-categories. On Poincaré objects this simply sends an object X ∈ C to
the associated hyperbolic object, considered with its canonical Lagrangian.

Proposition 5.19. A Poincaré object in (C, Ϙ) is essentially the same as a map
(Spfin, Ϙu)→ (C, Ϙ) of Poincaré-∞-categories.

Proof. We first construct a ‘universal’ Poincaré object in (Spfin, Ϙu): this has under-
lying object S ∈ Spfin and the form is given by an element in Ϙu(S). To this end we
recall that Ϙu(S) is given by the pullback

Ϙ
u(S) //

��

DS

triv
��

(DS)hC2
can // (DS)tC2 .

There is a canonical map qu : S→ Ϙu(S) given by the identity on the right upper fac-

tor and the pullback S p∗−→ DShC2 on the left left, which fit together by construction
of the right hand map. 11 The underlying bilinear form of element is represented
by the trivial map on the sphere S⊗ S→ S thus non-degenerate so that we see that
(S, qu) is Poincaé.

Now for any map (Spfin, Ϙu)→ (C, Ϙ) we get an induced Poincaré object in (C, Ϙ) by
pushing the universal object (S, qu) forward. We need to verify that this assignment

11One can in fact show that Ϙu(S) = ShC2⊕S and under this equivalence the element in question
is given by (0, 1).
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induces a 1-1 correspondence on equivalence classes. To this end let us analyse more
precisely what it means to give map

(Spfin, Ϙu)→ (C, Ϙ) .

First of all, an exact functor Spfin → C is unqiuely determined by its value on S and
this gives a correspondence between objects of C and exact functors Spfin → C. For
such a given functor F : Spfin → C we consider the pulled back quadratic functor
Ϙ
′ := F ∗Ϙ on Spfin and analyse what it means to give a transformation η : Ϙu → Ϙ′.

By our decomposition such a transformation is given by a map D → L′
Ϙ

= F ∗LϘ
and a map of bilinear functors D ⊗D → B′

Ϙ
= F ∗BϘ together with a homotopy on

the respective Tate terms.
Now we use the following facts:

(1) for every exact functor L : (Spfin)op → Sp a transformation D → L is
determined on S (i.e. the spectrum of maps D → L is equivalent to L(S)).

(2) For a bilinear functor B : (Spfin)op × (Spfin)op → Sp a transformation D ⊗
D → B is determined on (S, S) (i.e. the spectrum of such is equivalent to
B(S,S).

Thus we find that our transformation is just a triple given by an element in
L′
Ϙ
(S) = LϘ(C), an element in the homotopy fixed points B′

Ϙ
(S.S) = BϘ(C,C) and a

path in BϘ(C,C)tC2 . But this then exactly assembles to an element in Ϙ′(S) = Ϙ(C).
Thus we find that transformations η : Ϙu → F ∗Ϙ are precisely given by elements
in Ϙ(F (S)), i.e. Ϙ-forms on F (S). Then the non-degeneracy precisely works out to
show that this functor is Poincaré if the form on F (S) is. �

Remark 5.20. One could also work with dg-categories C and dg-functors Ϙ : Cop →
D(Z) instead of stable ∞-categories and functors to spectra throughout.12 It was
a question of I. Patchkoria which object (C, Ϙ) is ‘universal’, i.e. plays the role of
(Spfin, Ϙu) in this world. The answer is unclear.

6. L-groups and the Grothendieck–Witt group

Definition 6.1. Let (C, Ϙ) be a Poincaré-∞-category. The L-groups of (C, Ϙ) are
defined as the abelian groups

Ln(C, Ϙ) =
{Iso. classes of n-dimensional Poincaré objects in (C, Ϙ)}

{metabolic Poincaré objects}
where this quotient is taken in abelian monoids (under direct sum). We also set for a
ring with involution Ls∗(R, σ) := L∗(Dperf(R), Ϙs) and Lq∗(R, σ) := L∗(Dperf(R), Ϙq)
and call these the quadratic and symmetric L-groups of R.

Remark 6.2. A word of warning is in order. This is highly non-standard notation.
Firstly, Lurie writes Ln(R, σ) for the L-theory of the category Dfp(R), which is
usually referred to as free L-theory, whereas we use the category Dperf(R) which
produces what is called projective L-theory. In the case where the algebraic K-
theory K0(R) ∼= Z via the canonical map Z→ R, there is no difference between the
two constructions. For our purposes it will be much better to study the projective
L-groups rather than the free ones. Secondly, this notation differs from the notation
introduced by Ranicki (which is the standard reference for algebraic L-theory). He

12Equivalently: HZ-linear stable ∞-categories C and HZ-linear functors Ϙ : Cop → D(Z).
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writes L•(R, σ) for symmetric L-theory and L•(R, σ) for quadratic L-theory and
usually also means free L-theory.

Proposition 6.3. The abelian monoids Ln(C, Ϙ) are groups, the inverse of (X, q)
is given by (X,−q). Moreover these groups are functorial in maps of Poincaré-∞-
categories.

Proof. We have to show that (X, q) + (X,−q) admits a Lagrangian. Such a La-
grangian is given by the diagonal subspace

X
∆−→ X ⊕X

together with a certain nullhomotopy of ∆∗(q⊕−q). To construct this nullhomotopy
observe that the composite

Ϙ(X)⊕ Ϙ(X)→ Ϙ(X ⊕X)
∆∗−−→ Ϙ(X)

is the identity on each summand, thus given by the addition of the spectrum Ϙ(X).
Therefore ∆∗(q ⊕ −q) = q − q = 0 comes with a canonical nullhomotopy. For this
nullhomotopy the induced homotopy in the sequence

X
∆−→ X ⊕X q̃⊕−q̃−−−→ DX ⊕DX ∇−→ DX

is given by the canonical nullhomotopy, so that this becomes a fibre sequence.
The functoriality in maps of Poincaré categories is clear since those preserve

Poincaré objects, sums of Poincaré objects and metabolic Poincaré objects. �

Proposition 6.4. The canonical map (Dperf(R), ϘqR) → (Dperf(R), ϘsR) induces a
map of abelian groups

Lq∗(R)→ Ls∗(R)

which is an isomorphism if 1
2 ∈ R. For a general ring R the kernel and cokernel of

this map are 8-torsion, in particular the map becomes an isomorphism after inverting
2 in the L-groups.

Proof. If 1
2 ∈ R then the map ϘqR → Ϙ

s
R is an equivalence, as the cofibre is given by

B(X,X)tC2 which is a module over RtC2 = 0. The last assertion will follow later,
basically by checking it for R = Z and adhering to multiplicative properties as we
will discuss soon. �

Proposition 6.5. The L-groups Lq∗(R) and Ls∗(R) are 4-periodic for any ring with
involution and 2-periodic if R is an F2-algebra.

Proof. We consider the shift map

[2] : Dperf(R)→ Dperf(R)

and claim that it extends to an equivalence of Poincaré-∞-categories (Dperf(R), ϘsR)→
(Dperf(R), ϘsR) and similar for the quadratic case. To this end we observe that

Ϙ
s
R(X[2]) = B (X[2], X[2])hC2

= mapD(R⊗ZR)(X[2]⊗Z X[2], R)hC2

= mapD(R⊗ZR)((X ⊗Z X)[4], R)hC2

= mapD(R⊗ZR)((X ⊗Z X), R)hC2 [4]

where we have used that C2-equivariantly X[2]⊗ZX[2] ' (X⊗ZX)[4] which follows
since the flip action on S2 ⊗ S2 is trivial in homology. This is not true for the
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flip action on S1 ⊗ S1 is trivial in homology, as it acts by a sign, but it is true in
F2-homology. �

Warning 6.6. The last two results completely fail for ring spectra in place of rings:
in this generality neither the L-groups are not necessarily periodic (implied by com-
putation of Weiss-Williams) and the map

Lq∗(R)[1
2 ]→ Ls∗(R)[1

2 ] .

is not an equivalence in general. The 4-periodicity of L-groups is true however for
complex orientable ring spectra R (say commutative with identity involution).

Remark 6.7. The proof of Proposition 6.5 shows that the group Lsn+2(R) can be

described as the L-group Ln of the Poincaré-∞-category (Dperf(R), ϘsR,−) where ϘsR,−
is the quadratic functor given by

Ϙ
s
R,−(X) = mapD(R⊗ZR)((X ⊗Z X)⊗Z Zσ, R)hC2

where Zσ denotes the integers with the C2-action given by the sign. This spectrum
is the spectrum of antisymmetric bilinear forms and the corresponding L-groups are
denotes as L−s∗ (R). A similar observation applies to the quadratic case and yields

an isomorphism Lq∗+2(R) = L−q∗ (R).

Recall that we have shown that the Poincaré objects C∗(M) for a closed oriented
manifold M is metabolic if M is a boundary, thus the respective element in the
L-group Lsn(Z) is trivial. We thus get a graded group homomorphism

ΩSO
∗ → Ls∗(Z)

where ΩSO
∗ is the oriented bordism ring. This is called the Ranicki–Sullivan orien-

tation (or genus). We will see that the groups Ls∗(Z) are given by

Ls∗(Z) =


Z for ∗ = 4n, n ∈ Z
Z/2 for ∗ = 4n+ 1, n ∈ Z
0 else

and the the Sullivan-Ranicki orientation map is given by the signature of a manifold
in degrees 4n and by the deRham invariant in degrees 4n+1. The de Rham invariant
assigns to a manifold M of dimension (4n+1) the mod 2 reduction of the dimension
of the 2-torsion in H2n(M).13

Proposition 6.8. There are group homomorphisms

W s
0 (R)→ Ls0(R) W q

0 (R)→ Lq0(R)

for any ring with involution where W s
0 (R) and W q

0 (R) are the Witt groups of sym-
metric, respective quadratic unimodular forms on finitely generated, projective R-
modules.

Proof. Clear. �

13This is also given by the Stiefel-Whitney number w2w4n−1 or by the Kervaire semi-
characteristic

k(M) =

2n∑
i=0

dimH2i(M,R)mod2

of M .
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We will show in the next section that the map W q
0 (R)→ Lq0(R) is an isomorphism

by means of algebraic surgery. The first map is in general not an isomorphism, but
it is if R is a Dedekind ring or if 1

2 ∈ R since then symmetric and quadratic Witt
and L-groups agree.

Recall the definition of K-theory of a (small) stable ∞-category C: the group
K0(C) is defined as

K0(C) =
{Isomorphism classes of objects in C}
[X] = [L⊕X/L] for L→ X a map

.

Here the quotient is taken in abelian monoids where the monoid structure is given
by direct sum, i.e. [X] + [Y ] = [X ⊕ Y ]. The claim is that this monoid is already a
group with inverse given by −[X] = [X[1]]. To see this one simply observes that we
have

X +X[1] = X ⊕X[1] = X ⊕ 0/X = 0

in K0(C).

Definition 6.9. Let (C, Ϙ) be a Poincaré-∞-category. Then we define an abelian
group

GW0(C, Ϙ) =
{Iso. classes of 0-dimensional Poincaré objects in (C, Ϙ)}

[X] = [hyp(L)] for L→ X a Lagrangian

where the quotient is taken in abelian monoids.

Lemma 6.10. The abelian monoid GW0(C, Ϙ) is an abelian group and we have a
well-defined group homomorphism

hyp : K0(C)→ GW0(C, Ϙ) [X] 7→ [hyp(X)]

Proof. We first prove the second claim. Thus we have to verify that for a fibre
sequence

X
i−→ Y

p−→ Z

in C the relation hyp(Y ) = hyp(X) + hyp(Z) holds in the monoid GW0(C, Ϙ). To
see this note that hyp(X) + hyp(Z) = hyp(X ⊕ Z) = hyp(X ⊕ DZ) and that the
inclusion

X ⊕DZ → hyp(Y ) = Y ⊕DY
extends to a Lagrangian (exercise).

To see that it is a group we claim that the inverse of (X, q) is given by (X,−q) +
hyp(X[1]). This follows since

[X, q] + [X,−q] = [X ⊕X, q ⊕−q] ∼ hyp(X)

where the latter equivalence follows since the diagonal is a Lagrangian as we have
seen in the proof of Proposition 6.3 . Now by the previous discussion hyp(X[1]) is
an inverse to hyp(X). �

Lemma 6.11. A Poincaré object X represents 0 in L0(C, Ϙ) precisely if it is meta-
bolic. It represents zero in GW0(C, Ϙ) precisely if there are metabolic objects A,B
such that

X ⊕A⊕ hyp(LA[1]) ∼= B ⊕ hyp(LB[1]) .
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Proof. For the first statement we claim that two objects X and Y in L0(C, Ϙ) are
equivalent precisely if there is an algebraic cobordism, that is a Lagrangian in X⊕Y
(the latter denotes Y with the inverted form −qY ). To see this one simply has to
observe that this is actually an equivalence relation (in particular transitive). The
key is to ‘compose’ algebraic cobordisms, which can be done be means of a pullback

L′′

  ~~

L

  ��

L′

  ~~

X Y Z

and we leave it to the reader to verify that L′′ is a Lagrangian in X⊕Z in a canonical
way.

For the second statement we claim that we have a presentation as abelian monoids

GW0(C, Ϙ) =
{Iso. classes of 0-dimensional Poincaré objects in (C, Ϙ)}

[X] + [hyp(L[1])] for L→ X a Lagrangian
.

This follows from the facts: in our definition of GW0(C, Ϙ) we clearly have that
[X] + [hyp(L[1])] = 0. Conversely one easily sees that in the presentation above we
have that hyp(L) and hyp(L[1]) are inverse to one another. As a result we get that
the relation [X] = hyp(L) holds as well.

Then finally the set of all [X] + [hyp(L[1])] is a submonoid of the monoid of
all iso classes so that the result follows by the usual way quotients of monoids are
formed. �

Proposition 6.12. For a Poincaré ∞-category (C, Ϙ) there is a C2-action on K0(C)
given by X 7→ DX and we have an exact sequence

L1(C, Ϙ) fgt−→ K0(C)C2

hyp−−→ GW0(C, Ϙ)→ L0(C, Ϙ)→ 0

Proof. The well-definedness of the C2-action is clear, since D : Cop → C is an exact
functor, so that for X → Y → Z the resulting sequence DZ → DY → DX is also
exact and thus the relation defining K-theory is preserved. To see that the first map
is well-defined we have to note that if a Poincaré object X ∈ L1 (we skip the (C, Ϙ)
for the rest of the proof to simplify notation) is metabolic, then [X] = 0 in (K0)C2 .
But being metabolic for X means that we have a Lagrangian L→ X, in particular
an exact sequence

L→ X → DL[−1]

and thus in K0 that [X] = [L⊕DL[−1]] = [L]− [DL] thus this is zero in the orbits.
Now to the exactness: the surjectivity on the right is clear. To see the exactness

at GW0 we first note that the composite

(K0)C2

hyp−−→ GW0 → L0

is obviously zero. Moreover by the previous Lemma [X] is zero in L0 iff it admits a
Lagrangian L, so that in GW0 we have

[X] = [hyp(L)]

which lies in the image of the hyperbolic map.
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It remains to show the exactness at (K0)C2 . To this end we first note that the
composition

L1
fgt−→ (K0)C2

hyp−−→ GW0

is zero since for a given X ∈ L1 we have that X can be interpreted as a Lagrangian
of 0 (as a 0-dimensional Poincaé object) and thus in GW0 we have that

hyp(X) = 0.

As a result we get an induced map

(K0)C2/L1
hyp−−→ GW0

and we want to show that it is injective. To this end assume that [X] lies in the
kernel. Then hyp(X) represents zero in GW0 so that we find metabolic A and B
with

hyp(X)⊕A⊕ hyp(LA[1]) ∼= B ⊕ hyp(LB[1]) .

Then this object has two different Lagrangians, namely X ⊕ LA ⊕ LA[1] and LB ⊕
LB[1]. The next Lemma implies that we have that the classes of these objects agree
in K0(C, Ϙ)C2/L1(C, Ϙ) which then shows that we have there

[X] = [X] + [LA] + [LA[1]] = [LB] + [LB[1]] = 0 .

This finishes the proof. �

Lemma 6.13. For a given metabolic object X with two different Lagrangians L1, L2

we have that [L1] = [L2] in K0(C, Ϙ)C2/L1(C, Ϙ).

Proof. To see this note that for two such Lagrangians we can form the pullback

L1 ×X L2

and this is canonically a Poincaré object of dimension 1 (exercise, think of compo-
sition of nullbordisms). Thus from the pullback square we get in (K0)C2/L1 the
relation

[L1] + [L2] = [X] + [L1 ×X L2] = [X] = [L1] + [DL1] = [L1] + [L1]

so that the claim follows. �

We note that the exact sequence

L1(C, Ϙ) fgt−→ K0(C)C2

hyp−−→ GW0(C, Ϙ)→ L0(C, Ϙ)→ 0

will later be continued to the left by the higher Grothendieck–Witt groups GWi(C, Ϙ)
and the left terms are the higher homotopy groups of the spectrum K(C)hC2 .

Proposition 6.14. For a ring R there are group homomorphisms

GWs
0(R)→ GW0(Dperf(R), ϘsR) GWq

0(R)→ GW0(Dperf(R), ϘqR)

where GWs
0(R) and GWq

0(R) are defined as the respective group completions.

We will also see in the next section using algebraic surgery that the second ho-
momorphism here is an isomorphism. For the first one to become an isomorphism
we have to replace the quadratic functor ϘsR by a better one (the aforementioned
non-abelian derived functor).
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7. Algebraic surgery

In this section we want to explain the process of algebraic surgery, which allows
to simplify Poincaré objects. More precisely we will show that any Poincaré object
(X, q) for (Dperf(R), ϘqR) can be modified to a cobordant object (X ′, q′), i.e. they
represent the same class in Lq0(R), such that X ′ = P [0] is concentrated in degree 0.
This will be the key step to compute the group Lq0(R).

As a first step we recall the notion of algebraic bordisms. So far we have only
defined null-bordisms. Throughout we work in a fixed Poincaré-∞-category (C, Ϙ).

Definition 7.1. An algebraic bordism between Poincaré objects (X, q) and (X ′, q′)
is given by a Lagrangian in (X ⊕X ′, q ⊕−q′).

As before we think of those as spans

L
i

��

j

��

X Y

together with a path between the two forms qX |L and qY |L such that a certain
non-degeneracy condition is satisfied: a priori it means that the sequence

L
(i,j)−−→ X ⊕ Y ∼= DX ⊕DY (i,−j)−−−→ DL

is a fibre sequence (the sign comes from the fact that we have taken the opposite
form in Y , it is really in the identification of Y with DY but we have placed in
the map to take the standard identification. But this is of course equivalent to the
assertion that the square

L
i

}}

j

!!

X

Di !!

Y

Dj}}

DL

with the induced filler is a pullback.

Definition 7.2. A surgery datum in (C, Ϙ) is given by a Poincaré object (X, q)
together with a map s : S → X and a specified nullhomotopy of q|S.

Remark 7.3. This definition is of course highly inspired by geometric surgery. In
fact a geometric surgery datum on a closed n-manifold M , that is an embedding
i : Sp ×Dn−p →M leads to an algebraic surgery datum on the associated cochains
C∗(M,Z) using the induced map

S = Z[p− n]→ C∗(M,Z)

under Poincaré duality. This is just the cohomology class in Hn−p(M) Poincaré
dual to the homology class [i] ∈ Hp(M). The nullhomotopy of the restricted form
can then be obtained as follows. We consider the trace of the surgery

W = (M × [0, 1])
∐

Sp×Dn−p×{1}

(
Dp+1 ×Dn−p) 'M∐

Sp

Dp+1
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and the result of surgery

M ′ =
(
M \ (Sp × D̊n−p)

) ∐
Sp×Sn−p−1

(
Dp+1 × Sn−p−1

)
Then one has that W is a cobordism between M and M ′. Consequently we have
that the images of the fundamental classes of M and M ′ in W agree. As a result, the
restrictions of the fundamental symmetric Poincaré forms on C∗(M) and C∗(M ′) to
C∗(W ) agree. Now we have the following two facts:

(1) There is a factorization

S → C∗(W )→ C∗(M),

i.e. the class in Hn−p(M) comes pulled back from Hn−p(W ) (this is true
since the pushforward of [i] ∈ Hp(M) to Hp(W ) vanishes (by construction).

(2) The composite S → C∗(W ) → C∗(M ′) vanishes, this is in fact a fibre se-
quence.

Together these facts imply that the form on C∗(M) pulled back to S vanishes and
provides us with a canonical nullhomotopy. Moreover we see that we can assemble
everything into a diagram

C∗(W )

%%yy

C∗(M ′) C∗(M)

where S is the fibre of the map C∗(W )→ C∗(M ′) and the fibre of the right map is
induced by the dual class Sn−p−1 →M ′.

Clearly every Lagrangian gives rise to a surgery datum but we do not require S
to be Lagrangian here. In fact, the process that we are going to describe will take
advantage of the failure to be Lagrangian. To this extend note that for a surgery
datum we get a specified nullhomotopy of the composite

S
x−→ X = DX

Dx−−→ DS .

One can think of this as a sort of ‘2-term chain complex’ in the stable ∞-category
C and what we want to do not is to measure its failure to be a fibre sequence.

Lemma 7.4. For a given sequence A → X → B in a stable ∞-category with a
specified nullhomotopy we have a canonical equivalence

cof(A→ fib(X → B)) ' fib(cof(A→ X)→ B) .

We will denote this object by H(A→ X → B) where the H is for ‘homology’.

Proof. We consider the square

A

��

// 0

��

X // B

as a morphism from A→ X to 0→ B in the arrow category C∆1
. Then the functor

cof : C∆1 → C
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is exact, so it in particular preserves fibres. Thus first taking the fibre in the arrow
category and then the cofibre is the same as first taking the cofibre functor and then
the fibre. This shows the claim. �

Remark 7.5. The homology H(A→ X → B) admits a two step ‘filtration’

H(0→ 0→ B)→ H(0→ X → B)→ H(A→ X → B)

which is

B[−1]→ fib(X → B)→ H(A→ X → B) .

The ‘associated graded’ of this filtration recovers the initial ‘chain complex’ since
taking homology is an exact process. This is the first step in an equivalence between
filtered objects and chain complexes in C.

In the situation of a surgery datum S
s−→ X (we abusively as before suppress the

forms and nullhomotopies in the notation) we write

Xs := H(S
x−→ X

Dx−−→ DS) and Ls := fib(X → DS) .

There are by definition maps Ls → Xs (with fibre S) and Ls → X (with cofibre
DS).

One should think of Xs as been obtained by a 2-step process: first killing S → X,
i.e. taking the cofibre X/S. But then the result does not have Poincaré duality
anymore, since D(X/S) = fib(X → DS) = Ls which is not equivalent to X/S
unless S = 0. This is then remedied by taking the fibre of X/S → DS as we then
get

D(Xs) = D(H(S → X → DS)) = Xs

by the self duality in the definition of homology. In fact we get a pullback square

Ls
i

||

j

!!

Xs

""

X

Dj}}

DLs

which is ‘self-dual’.

Proposition 7.6. In the situation above, the object Xs has a canonical structure qs
of a Poincaré object and Xs ← Ls → X is canonically an algebraic bordism between
(X, q) and (Xs, qs) refining the above square. As in geometry we say that (Xs, qs) is
obtained from (X, q) by performing surgery along s and that Ls is the trace of the
surgery.

We first need a preparatory Lemma:

Lemma 7.7. Let (C, Ϙ) be a Poincaré-∞-category and A → B → C be a fibre
seuqence. Then there is an induced fibre sequence

Ϙ(C)→ Ϙ(B)→ Ϙ(A)×BϘ(A,A) BϘ(A,B).
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Proof. We note that we have a commutative diagram

Ϙ(C)

��

// Ϙ(B) //

��

Ϙ(A)

��

BϘ(C,C) // BϘ(B,B) // BϘ(A,A)

factoring the lower morphisms through BϘ(A,B) we get a square

Ϙ(C)

��

// Ϙ(B) //

��

Ϙ(A)

��

0 // BϘ(A,B) // BϘ(A,A)

with compatible horizontal nullhomotopies. The right hand square gives rise to the
morphism Ϙ(B)→ Ϙ(A)×BϘ(A,A)BϘ(A,B) and the nullhomotopies of the horizontal
maps induce a map from Ϙ(C) to the total fibre of the right hand square, i.e. the
sequence

Ϙ(C)→ Ϙ(B)→ Ϙ(A)×BϘ(A,A) BϘ(A,B)

in question with its nullhomotopy. Now we need to specify that it is a fibre sequence.
The whole sequence is clearly exact and functorial in Ϙ. Thus by the structure
theory for quadratic functors it thus suffices to show this claim for Ϙ linear and Ϙ
homogenous. The first case is obvious and for the second we note that we get a fibre
sequence

Bϙ(C,C)→ BϘ(B,B)→ BϘ(B,A)×BϘ(A,A) BϘ(A,B)

using bilinearity. Thus applying (−)hC2 implies the claim since

BϘ(B,A)×BϘ(A,A) BϘ(A,B) = BϘ(A,A)×BϘ(A,A)⊕BϘ(A,A) BϘ(A,B)⊕BϘ(B,A) .

which is straighforward to verify (it is the usual way of rewriting a pullback as an
equalizer). �

Remark 7.8. One can also use the fact that Ϙ sends pushouts to totalizations to
deduce the claim: applying this we get that Ϙ(C) is equivalent to the limit of the
diagram

Ϙ(B) //
// Ϙ(A⊕B) //

//
// Ϙ(A⊕A⊕B)

indexed over ∆≤2. It is not hard to deduce the formula also from this invoking
the definition of the bilinear part. Similarly one can easily deduce it from the 2-
excessiveness of Ϙ in Goodwillie’s sense.

Proof of Proposition 7.6. We employ the square

Ls
i

yy

j

%%
Xs

%%

X

Djyy

DLs = X/S

with induced fibre sequence

S → Ls → Xs .
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We get an induced fibre sequence

Ϙ(Xs)→ Ϙ(Ls)→ Ϙ(S)×map(S,DS) map(Ls, DS)

We want to define an element qs in Ϙ(Xs), that restricts to the pullback q|Ls , so we
have to give a nullhomotopy of q|Ls in Ϙ(S)×map(S,DS) map(Ls, DS). By assumption
we have a specified nullhomotopy of the restriction of q to S and the map Ls → DS

is canonically nullhomotopic as Ls is the fibre of the induced map X
Di−→ DS. These

two homotopies fit together by construction. Now one checks that the adjunct map
of this form induces an equivalence D(Xs) ' Xs and that the square above is induced
by the structures that we have just constructed. �

Now we want to see how to use this abstract construction to simplify objects
up to surgery. Let us therefore consider the situation of the Poincaré-∞-category
(Dperf(R), Ϙq) and assume that we are given a Poincare object (X, q). By perfectness,
we see that X will be bounded below but might have negative homology. Pick a
negative homology class of lowest degree represented by a map

s : R[−k]→ X .

We have that Ϙq(R[−k]) = map(R[−2k], R)hC2 = R[2k]hC2 is 2k-connective. In
particular it has vanishing π0 so that the restriction q|R[−k] vanishes (by a unique
homotopy as also π1 vanishes). We thus can perform surgery along s and obtain an
object

Xs = H (R[−k]→ X → R[k])

The cofibre X/R[−k] has as lowest homology H−k(X)/s and this lowest homology
agrees with the lowest homology of Xs. As a result we see that we can inductively
get rid of the lowest homology. This proves the following:

Every Poincaré object in (Dperf(R), Ϙq) is bordant to one which is
connective.

Now let us analyze how such connective Poincaré objects X look like: first of all,
we get that DX ' X is also connective. Thus it follows that X = D(DX) =
RHom(DX,R) is coconnective, that it has vanishing homology above degree 0, thus
X is given by P [0] for an R-module P . But in fact more is true.

Lemma 7.9. Assume that for a perfect chain comples X of R-modules we have that
X is a-connective and the dual DX (as an Rop-module) is (−b)-connective. Then X
has Tor-Amplitude in [a, b] and consequently can be represented by a finite projective
chain complex

...→ 0→ Pb → Pb−1 → . . .→ Pa → 0→ ...

supported in the interval [a, b] (see Remark 2.11).

Proof. Clearly X has Tor-Amplitude ≥ a. We thus have to show that

X ⊗R N [0]

is b-truncated for any right R-module N . But we have

X ⊗R N [0] ' mapR(DX,N [0])

and the latter space is b-truncated as we have that

τ≥b+1(mapR(DX,N [0])) = τ≥0(mapR(DX[b+ 1], N [0])) = MapR(DX[b+ 1], N [0])

which vanishes since DX[b+ 1] is 1-connective. �
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In our situation this claim amounts to the assertion that

Every Poincaré object in (Dperf(R), Ϙq) is bordant to a Poincaré ob-
ject (P [0], q) for P finitely generated projective, i.e. one given by a
classical quadratic unimodular form.

In particular we see that the map W q
0 (R) → Lq0(R) is surjective. We actually

want to show that this map is an isomorphism. We thus have to do more: we have
to show that for a classical quadratic form (P, q) a Lagrangian L → P [0] exists
precisely if q is metabolic, that is a Lagrangian concentrated in degree 0, i.e. of
the form L′[0] such that the sequence L′ → P → DL′ is short exact, in particular
L′ → P is injective. However, if a Lagrangian L → P [0] happens to already be
connective then it follows that DL is connective as it is the cofibre of L→ P [0] and
thus L is also coconnective, thus concentrated in degree 0. Moreover it also follows
that DL is concentrated in degree 0. Thus the sequence in question is automatically
short exact and all modules are finitely generated projective.

Thus it suffices for our purposes to show that we can modify a given Lagrangian
so that we get a connective Lagrangian. We want to employ a relative version of
surgery to simplify a Lagrangian. To this end consider the following setup for a
general Poincaré-∞-category:

Given a Lagrangian L → X in a Poincaré object X and assume we have a map
s : S → L with a nullhomotopy S → L→ X. Then we get a form of degree 1 on S
by composing the two nullhomotopies of the restriction of q to S (one coming from
the Lagrangian structure and one coming from the nullhomotopy of the composition
S → L → X). Now assume that we have a nullhomotopy of this degree 1 form, or
equivalently a homotopy between the two path from q|S to zero. We can equivalently
interpret this datum as a surgery datum of the form

(S → 0)→ (L→ X)

in Met(C, Ϙ). Thus we can perform algebraic surgery in Met(C, Ϙ) and get a new
object, which is of the form

H (S → L→ D(S)[−1])→ X.

Now let us apply this process to our situation: we have a Lagrangian

L→ P [0]

in (Dperf(R), Ϙq) with P finitely generated projective. Then we again pick a homol-
ogy class S = R[−k]→ L of lowest degree. We find that

Ϙ
q(R[−k]) = map(R[−2k], R)hC2 = R[2k]hC2

is at least 2-connective so that we can choose all the necessary data and perform
surgery. But then L/S has lowest homology given by

H−k(L/S) = H−k(L)/s .

From the fibre sequence

H → L/S → D(0/S) = R[k − 1]

describing H = H (S → L→ D(S)[−1]) we see that for k ≥ 2 the lowest degree
homology of H and X/S agrees. But for k = 1 we get an exact sequence

...→ R→ H−1(H)→ H−1(L)/s→ H0(R[1]) = 0 .

so that we can unforunately not get rid of the (−1) first homology.
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Thus the result is that by surgery we can product a Lagrangian L that is (−1)
connective, i.e. in τ≥−1Dperf(R). It then follows from the cofibre sequence

L→ P [0]→ DL

that DL is connective which then by Lemma 7.9 implies that L has Tor-amplitude
in [−1, 0], i.e. can be represented by a chain complex of the form

L = (...→ 0→ L0 → L−1 → 0→ ...) .

In particular we have maps

L−1[−1]→ L→ P [0]

We consider the morphism in Met(C, Ϙ) given by

(2)
(
L−1[−1]

id−→ L−1[−1]
)
→ (L→ P [0])

we have that Ϙmet(L−1[−1]) = 0 so that we can equip this map with the structure
of a surgery datum The lower map L−1[−1] → P [0] is zero since L−1 is projective
so that the relevant Ext-group vanishes.

Now we want to perform surgery on this map. In order to identify the outcome
we need the following general assertion:

Lemma 7.10. Assume that we have an arbitrary Poincaré category (C, Ϙ) with an
object X. For any object S we consider the zero map s : S → X together with any
nullhomotopy of the pulled back form q |S.14 Then performing surgery on s produces
a direct sum

Xs = X ⊕M
where M is metabolic with Lagrangian D(S[1]).

Proof. We can write the surgery datum S → X as the sum of surgery data S → 0
and 0 → X where the first carries the nullhomotopy γ ∈ Ϙ(S) assumed in the
lemma. Then the surgery outcoming is clearly also a direct sum of the surgeries:
thus Xs = X ⊕M where M is obtained by surgery along S → 0. But then there is
a coboridsm between M and 0 as the trace of this surgery, thus a nullbordism given
by fib(0→ DS) = D(S[1]). �

Applying this lemma we see that performing surgery on the map (2) in Met(C, Ϙ)
the result takes the form

L0 → P [0]⊕M
where M has L−1[0] as a Lagrangian and is concentrated in degree 0. Thus in total
we arrive at the following conclusion.

If a Poincaré object P [0] in (Dperf(R), ϘqR) admits a Lagrangian null-
bordism, then there is a classical metabolic M such that P ⊕M is
also metabolic in the classical sense.

As a result of this whole discussion we have the following result.

14There is a canonical nullhomotopy and in a previous version of this lemma we assumed that
the nullhomotopy question was this canonical one. This leads to a slighly stronger conclusion
(hyperbolic instead of metabolic) but will not be satisfied in all of our cases of interest.
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Proposition 7.11. For any ring R with involution the canonical homomorphism

Wq
0(R)→ L0(Dperf(R), ϘqR)

(see Proposition 6.8) considering a classical quadratic form as a Poincaré object is
an isomorphisms.15

Proof. We have already seen surjectivity. For injectivity assume that a class [P ]
lies in the kernel. Then we know that P [0] admits a Lagrangian and thus by our
conclusion above that P ⊕M is metabolic. Thus in the Witt group Wq

0(R) we have

[P ] = [P ] + [M ] = [P ⊕M ] = 0

which shows the claim. �

Let us revisit quickly what we needed for the whole argument: we have used that
the quadratic functor ϘqR has the following properties:

(1) We have π0(ϘqR(R[−k])) = 0 for k > 0 so that we can perform surgery.
(2) The dual DR is connective so that in the sequence

R[−k]→ X → (DR)[k]

we do not get contributions messing up the surgery process (the critical case
is k = 1).

(3) For connective X we have that D(X) has Tor-Amplitude ≤ 0.
(4) The group

π0Ϙmet(R[−k]→ 0) = π1Ϙ(R[−k])

vanishes for k ≥ 2.
(5) For the last step we again needed DL−1 to be connective so that we get that

the metabolic M and its Lagrangian are connective.

Proposition 7.12. These assumptions (1)-(4) are satisfied for an arbitrary Poincaré
structure (Dperf(R), Ϙ) on Dperf(R) precisely if

• The duality D preserves the full subcategory ProjR ⊆ Dperf(R) of finitely
generated projective modules (or equivalently D(R) is finitely generated pro-
jective in degree 0).
• The value Ϙ(R) is connective.

Note that under the first assumption, the second is equivalent to the assertion
that LϘ(R) is connective using the fibre sequence

mapR(R,DR)hC2 → Ϙ(R)→ LϘ(R).

as the first term is connective.

Proof. We first show that our conditions are necessary: condition (2) above implies
that for a projective module P [0] we have that D(P [0]) is connective by passing
the direct sums and summands. But condition (3) then implies that it has Tor-
Amplitude in [0, 0], i.e. is finitely generated projective.

For the connectivity of Ϙ(R[−k]) we note that Ϙ(R[−1]) sits in a sequence

(mapR(R,DR)[2k])hC2 → Ϙ(R[−k])→ LϘ(R)[k]

15We recall once more that the source group is precisely defined as in the symmetric case, just
replacing symmetric forms by quadratic forms and Lagrangians.
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so that condition (1) implies that

(3) π−k(LϘ(R)) = π0(LϘ(R)[−k]) = π0(Ϙ(R[−k])) = 0

for all k ≥ 0 so that we get the desired connectivity.
Now we need to argue that our conditions are in fact sufficient. To this end

assume that Ϙ satisfies the assumptions of the Proposition. Then condition (1)
above is satisfied by reversing equation (3). Condition (2) is clear. For condition
(3) we write X as a finite iterated colimit of finitely generate projective modules
concentrated in degree zero. Then DX is a finite iterated limit of finitely generated
projective modules, thus has Tor-Amplitude ≤ 0. For condition (4) we again observe
that by the fibre sequence

(mapR(R,DR)[2k])hC2 → Ϙ(R[−k])→ LϘ(R)[k]

we have that π1 vanishes for k ≥ 1. The last condition is automatically satisfied
now. �

Definition 7.13. We say that a quadratic functor Ϙ on Dperf(R) is compatible with
the weight structure if it satisfies the assumptions of Proposition 7.12.

Example 7.14. The functor ϘqR is compatible with the weight structure. The func-
tor ϘsR is not since

Ϙ
s
R(R) = RhC2

is not connective.

Definition 7.15. In the situation of a quadratic functor Ϙ compatible with the weight
structure we define a group W Ϙ

0 (R) as follows: it is generated by equivalence classes
of Poincaré objects whose underlying object is of the form P [0] (we shall refer to this
as strictly 0-dimensional) and we take the quotient by objects that admit a strictly
0-dimensional Lagrangian L[0]→ P [0].

Theorem 7.16. For every Ϙ which is compatible with the weight structure the
canonical morphism W Ϙ

0 (R)→ L0(Dperf(R), Ϙ) is an isomorphism.

Remark 7.17. We note that the definition of W Ϙ

0 (R) can actually be simplified:
we claim that it only depends on the functor

π0Ϙ : Projop
R → Ab .

To see this we note that up to isomorphism we only need to fix the class q ∈ π0(Ϙ(X))
to say that an object is Poincaré, since from this we can still recover the homotopy
class X → DX as the image under the map

π0(Ϙ(X))→ π0(BϘ(X,X)) = [X,DX] .

The crucial point is though, that for a given Poincaré form q ∈ Ϙ(P [0]) with a
nullhomotopy h of the restricted form q|L for some projective L[0] to sequence

L[0]→ P [0]→ DL[0]

is a fibre sequence precisely if it is a short exact sequence of projective modules and
this is independent of the choice of h! Therefore we can neglect the choice of h.

Let us see what this means for the other quadratic L-groups. We have already
seen that

(Dperf(R), Ϙq[2n]) ' (Dperf(R), Ϙq(−1)n)
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where the right hand side was the (−1)n-quadratic functor. This is also compatible
with the weight structure so that we get the following result.

Corollary 7.18. For any ring with involution R we have isomorphisms

W
q,(−1)n

0 (R)
'−→ Lq2n(R) (P, q) 7→ (P [−n], q)

for any n where the source is the ±-quadratic Witt group of R.

Now we would like to understand the odd L-group and in general the higher L-
groups of a general Poincaré structure Ϙ : Dperf(R)op → Sp that is compatible with
the weight structure. In this situation we for for every n an equivalence

(Dperf(R), Ϙ[−2n])
[n]−→ (Dperf(R), Ϙ′)

where Ϙ′(X) = Ϙ(X[n])[−2n] which has the same duality X 7→ DϘX. In the qua-
dratic situation the new functor Ϙ′ is also compatible with the weigh structure. In
general this does not happen. Indeed, we find that L

Ϙ
′(R) = LϘ(R)[−n]. This being

connective for every R then forces LϘ(R) = 0 which is equivalent to the assertion
that Ϙ = ϘqB is quadratic (on a given symmetric bilinear part B).

Let us thus analyse the surgery process for Poincaré objects X of dimension n (not
necessarily even) for a given quadratic functor Ϙ. We pick a class in least negative
degree s : R[−k] → X as before. Now in order to be able to perform surgery we
need that πn(Ϙ(R[−k]) = 0. This is satisfied as long as k > n by the assumptions
on Ϙ. Thus we can perform surgery. The outcome Xs of surgery will sit in a fibre
sequence

Xs → X/s→ D(R[−k])[−n] = D(R)[k − n]

In order for H−k to be unaffected by the long exact sequence

H−k+1(D(R)[k − n])→ H−k(Xs)→ H−k(X)/s→ H−k(D(R)[k − n])

we thus need that k − n > −k or equivalently 2k > n. If n ≥ 0 then the second
condition is automatic if k > n so that we can perform surgery to improve X to
become −n-connective. Then we have

DX = (DX[−n])[n] = X[n]

will be connective so that we conclude that X has Tor-Amplitude in [−n, 0] and
arrive at the conclusion

Every Poincaré object of dimension n ≥ 0 is cobordant to one with
Tor-Amplitude in [−n, 0].

Definition 7.19. A strictly n-dimensional Poincaré object X ∈ Dperf(R) is an n-
dimensional Poincaré object with Tor-Amplitude in [−n, 0]. Such an object is called
strictly metabolic if it admits a Lagrangian L→ X which also has Tor-Amplitude in
degrees [−n, 0]. We define for any Poincaré structure the classical L-groups as

LϘcl,n(R) =
{strictly n-dimensional Poincaré objects over R}

{strictly metabolic Poincaré objects}
.

Theorem 7.20. For n ≥ 0 and Ϙ compatible with the weight structure the canonical
map

LϘcl,n(R)→ L(Dperf(R), Ϙ)

is an isomorphism.
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Proof. A priori we again have to be careful with the equivalence relation since by
surgery on a Lagrangian L→ X we again can only bring it in degrees ≥ −n−1. But
then we perform a similar trick as above to get rid of a bottom cell L−n−1[−n−1]→ L
to the price of replacing X by X ⊕M with M strictly metabolic. �

What happens for negative n? The same analysis applies so that to kill a class
in degree −k we need that k > n and that 2k > n or equivalently −k < −n and
−k < −n/2. We conclude that we can always achieve that the homology groups of
X vanish below degrees −n/2. Then we find that

DX = (DX[−n])[n] = X[n]

has homology vanishing below degrees n/2 so that we arrive at the following con-
clusion

Every Poincaré object of dimension n ≤ 0 is cobordant to one with
Tor-Amplitude in degrees [b−n/2c, d−n/2e].

Thus it might be concentrated in either 1 or 2 adjacent degrees depending on whether
n is even or odd. Note that for the quadratic functor a similar analysis also applies
in positive degrees and thus there we also have this conclusion for positive n.

Definition 7.21. We say that a Poincaré object X ∈ Dperf(R) of dimension n is
concentrated in the middle dimension if it has Tor-Amplitude in [b−n/2c, d−n/2e].
We say that such an object admits a middle dimensional Lagrangian if it admits a
Lagrangian with Tor-Amplitude in [b−n/2c, d−n/2e]. We define the middle dimen-
sional L-groups aka. (higher and lower) Witt groups as

W Ϙ

n(R) :=
{n-dimensional Poincaré objects concentrated in the middle dimension}

{those that admit a Lagrangian in the middle dimension}

Proposition 7.22. For a Poincaré stucture Ϙ : Dperf(R)op → Sp compatible with
the weight structure we have that the canonical morphism

W Ϙ

n(R)→ Ln(Dperf(R), Ϙ) .

is an isomorphisms for n ≤ 0. For Ϙq this is true in all degrees.

Proof. Again we only have to argue that we can get rid of the additional problems
that arise with Lagrangians which works precisely as before. �

Remark 7.23. We will see later that this is also true for other quadratic functors
under additional assumptions (e.g. R a Dedekind ring).

One can also give a rather explicit algebraic description of these Poincaré objects
in the middle dimension for n odd in terms of so-called formations. This leads
to a completely algebraic description of all the Witt-groups which is important to
understand them explicitly as we will see soon.

8. Weight structures

Definition 8.1. A weight structure on a stable ∞-category C consists of a pair of
full, saturated subcategories

Cw≤0, Cw≥0 ⊆ C
such that the following are satisfied:

(1) Cw≥0 is closed under coproduct, retracts and positive shifts and Cw≤0 is closed
under coproducts, retracts and negative shifts.
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(2) For X ∈ Cw≤0 and Y ∈ Cw≥1 := Cw≥0[1] we have that [X,Y ] = 0.
(3) For any X ∈ C there is a cofibre sequence

X ′ → X → X ′′

with X ′ ∈ Cw≤0 and X ′′ ∈ Cw≥1.

For a general weight structure we shall write

Cw≥n := Cw≥0[n]

Cw≤n := Cw≤0[n]

Cw∈[a,b] := Ca≤w≤b := Cw≥a ∩ Cw≤b
Cw♥ := Cw∈[0,0] .

The latter full subcategory will be refered to as the weighty heart of C. The weight
structure will be called bounded if every object X ∈ C lies in Cw∈[a,b] for finite a and
b.

Example 8.2. We consider the following weight structure on Dperf(R): the sub-
category Dperf(R)w≥0 is given by the connective objects i.e. homology concen-
trated in non-negative degrees or equivalently Tor-amplitude ≥ 0. The subcategory
Dperf(R)w≤0 consists of those objects of Tor-amplitude ≤ 0. In order to see that
this defines a weight structure we first note that these two subcategories are clearly
closed under finite colimits respectively limits. For the third condition we simply
note that for a given perfect complex

P = (...→ P2 → P1 → P0 → P−1 → P−2 → ...)

we can form new chain complexes

P ′ = (...→ 0→ 0→ P0 → P−1 → ...)

P ′′ = (...→ P2 → P1 → 0→ ...)

so that we get a cofibre sequence

P ′ → P → P ′′

and clearly P ′ ∈ Dperf(R)w≤0 and P ′′ ∈ Dperf(R)w≥1. Finally for a bounded projec-
tive complex in negative degree

P = (...→ 0→ 0→ P0 → P−1 → ...)

maps into any chain complex C concentrated in degrees ≥ 1 are clearly zero (we do
not need to resolve or anything since P is already projective and bounded below).
The heart consists of the full subcategory ProjZ ⊆ D(Z), given by perfect complexes
with Tor-Amplitude in [0, 0] which happens to be an ordinary category (considered
as an ∞-category).

Lemma 8.3. We have equalities

Cw≥0 = {B ∈ C | [A,B] = 0 for all A ∈ Cw≤−1}
Cw≤0 = {A ∈ C | [A,B] = 0 for all B ∈ Cw≥1}

Both of these subcategories are closed under extensions.

This in particular shows that a weight structure is overdetermined and can be
uniquely described by any of the full subcategory Cw≥0 or Cw≤0 (similar to the case
of t-structures that we will treat later).
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Proof. We show the first equality the second follows dually. The inclusion ⊆ is
clear. Thus assume that we have B in the right hand set of objects. Then we choose
B′ → B → B′′ with B′ ∈ Cw≤−1 and B′′ ∈ Cw≥0. By assumption the map B′ → B
is zero so that B′′ = B ⊕B′[1] admits B as a retract. Thus B ∈ Cw≥0.

For the closure under extensions note that for an extension B′ → B → B′′ with
B′, B′′ ∈ Cw≥0 we consider for any A ∈ Cw≤−1 the sequence

[A,B′]→ [A,B]→ [A,B′′]

which is exact in the middle. Thus [A,B] = 0. �

Example 8.4. Let R be any ring. Consider D(R), the unbounded derived category.
We set

D(R)w≥0

to be the connective chain complexes. Then we get from the previous Lemma that
we have to set

D(R)w≤0 = {X ∈ D(R) | [X,Y ] = 0 for Y 1-connective} .
Most of the axioms are clear. The main non-trivial thing to verify is to give the
factorization for some X which we do as before: we represent X by a K-projective
chain complex

X = (...→ P2 → P1 → P0 → P−1 → P−2 → ...)

and construct the factorizatiom X ′ → X → X ′′ as

X ′ = (...→ 0→ 0→ P0 → P−1 → ...)

X ′′ = (...→ P2 → P1 → 0→ ...)

Now one easily sees (as before) that X ′ has non-positive weight and X has positive
weight. In fact this shows that X has weight ≥ 0 or ≤ 0 or in [a, b] preicsely if it
can be represented by a K-projective chain complex in these exact degrees.

Remark 8.5. The condition that for a chain complex X there are no non-trivial
maps to a connected chain complex is also called projective Amplitude ≤ 0. It is
equivalent to the assertion that

πi(map(X,N [0]) = 0

for i > 0 and N an ordinary module. In general we can ask this to be true for i
outside of any interval and then say that X has projective amplitude in this interval.
This ends up being equivalent to be representable by a chin complex in these precise
degrees. In the perfect case this is equivalent to having Tor amplitude in that
intervall.

Example 8.6. We construct weight structures on Spfin and Sp by letting the positive
part be connective spectra. We then find that

Spw≤0 = {X ∈ Sp | X admits a cell structure with cells in degrees ≤ 0}
and similar

Spfin
w≤0 = {X ∈ Sp | X admits a cell structure with cells in degrees ≤ 0}

The latter can equivalently be described as the set of all spectra X such that
H∗(X,Z) vanishes in positive degrees and is free in degree 0. The heart consists
of the full subcategory ProjS ⊆ Spfin of all spectra that are of the form ⊕S (and
similar for infinite sums in the non-finite case).
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Lemma 8.7. Any object X ∈ Cw∈[a,b] admits a finite cell structure, that is a filtration

0→ Xa → Xa+1 → Xa+2 → ...→ Xb = X

with Xn/Xn−1 in Cw=n.

Proof. We proceed by induction over b − a. If b = a then the claim is clear. In
general let X ∈ Cw∈[a,b] and chose a fibre sequence

X ′ → X → X ′′

with X ′ ∈ Cw≤b−1 and X ′′ ∈ Cw≥b. We claim that in fact X ′ ∈ Cw∈[a,b] and X ′′ ∈
Cw=b. This then by inductively finishes the proof. To see the claim we first observe
that X ′′ is an extension

X → X ′′ → X ′[1]

where X and X ′[1] both have weight ≤ b. Thus X ′′ also has weight ≤ b and thus
weight exactly b. Similar we conclude from the extension

X ′′[−1]→ X ′ → X

that X ′ has weight ≥ a. �

Remark 8.8. For a general object X there is an unbounded filtration

...→ Xn → Xn+1 → ...

with compatible maps Xn → X such that the weight of the cofibre Xn → X tends
to ∞ with n → ∞ and the weight of Xn tends to −∞ with n → −∞. Under
additional compatiblity assumptions (a non-degenerate weight structure compatible
with sequential limits/colimits) this implies that X = colim−−−→Xn and lim←−Xn = 0, i.e.

that this is an complete exhaustive filtration.

Lemma 8.9. The heart Cw♥ is an additive ∞-category and any cofibre sequence
X ′ → X → X ′′ in C with X ′, X ′′ ∈ Cw♥ (and thus also X ∈ Cw♥) splits, i.e. is
equivalent to

X ′
i1−→ X ′ ⊕X ′′ p2−→ X ′′

Proof. It clearly is additive as it is a full subcategory of a stable ∞-category (which
is additive by Lemma 2.4). Thus it remains to show that every sequence splits. For
this it suffices to show that the map X ′′ → X ′[1] is zero. But this immediately
follows since X ′[1] is in Cw≥1 and X ′′ ∈ Cw≤0. �

Warning 8.10. We do not claim that any cofibre sequence in the heart Cw♥ itself
splits. The seuqence in the heart that are cofibre sequences in C are precisely those
sequences that are fibre and cofibre sequences in the heart.

We recall that for a stable ∞-category C the K-theory K0(C) was defined as

K0(C) =
{Isomorphism classes of objects in C}
[X] = [L⊕X/L] for L→ X a map

.

For an additive ∞-category like Cw♥ we define the K-theory simply as a the group
completion of isomorphism classes of objects (under direct sum).

Proposition 8.11. For a bounded weight structure on C the the canonical map

K0(Cw♥)→ K0(C) P 7→ P

is an isomorphism.
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Proof. First note that this morphisms exists by the universal property of the group
completion. First in order to see that this map is surjective we note that by Lemma
8.7 any object of C admits a finite filtration

0→ Xa → Xa+1 → Xa+2 → ...→ Xb = X

with Xn/Xn−1 in Cw=n. Thus in K0(C) we get that

[X] =
∑
n

[Xn/Xn−1] =
∑
n

(−1)n[Yn]

with Yn = Xn/Xn−1[−n] ∈ Cw♥. This shows surjectivity and also gives us a candi-
date for a potential inverse map:

[X] 7→
∑
n

(−1)n[Yn]

for some ‘cell’ filtration on X. We want to argue that this is a well-defined map.
Assume first that X has weight in [0, 1] and there are two maps

X0 → X and X ′0 → X

from objects X0, X
′
0 ∈ Cw♥ with respective cofibres X/X0 and X/X ′0 in Cw=1, i.e.

Y1 = X/X0[−1] and Y ′1 = X/X ′0[−1] in the heart. In particular we have written X
as X0/Y0 and X ′0/Y

′
0 . We will now show that in K0(Cw♥) the equality [X0]− [Y1] =

[X ′0]− [Y ′1 ] holds.
First we claim that there is a map X0 → X ′0 over X. To see this we simply lift the

map X0 → X through X ′0 uisng that the cofiber sits in Cw≥1 and the orthogonality
relation. Then we get a commutative square

Y1
//

��

X0

��

Y ′1
// X ′0

in which all terms lie in the heart. This is a pullback as the horizontal cofibres agree.
Thus we have a fibre sequence

Y1 → X0 ⊕ Y ′1 → X ′0

where all terms are in the heart. This splits by Lemma 8.9 and thus we get that
X0 ⊕ Y ′1 ' Y1 ⊕X ′0 which implies the equality in K0(Cw♥) that we want.

The general case work similar (by induction) but we do not want to introduce
the necessary terminology for time reasons: one shows that for any two finite cell
structures Xi and X ′i with shifted subquotients Yi, Y

′
i ∈ Cw♥ on an object X ∈ C

one gets an equivalence⊕
n

(
Y2n ⊕ Y ′2n+1

)
'
⊕
n

(
Y2n+1 ⊕ Y ′2n

)
of objects in the heart. This then shows the necessary equality in K0(Cw♥). We
recommend this in the case of Dperf(R) as a nice exercise in homological algebra
(hint: choose a map and pass to the mapping cone first). �

Definition 8.12. A Poincaré structure Ϙ on C is compatible with a bounded weight
structure if the following are satisfied:

(1) The duality restricts to a functor D :
(
Cw♥

)op → Cw♥.
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(2) Ϙ sends Cw♥ to connective spectra.

We then speak of a weight structure on the Poincaré-∞-category C.

Lemma 8.13. Condition (1) is equivalent to:

(1a) The duality sends Cw≤0 to Cw≥0 and vice versa.

Under condition (1) the second condition is equivalent to:

(2a) LϘ sends Cw♥ to connective spectra.
(2b) LϘ sends Cw≤0 to connective spectra
(2c) Ϙ sends Cw≤0 to connective spectra

Proof. For (1) ⇒ (1a) note that every object in note that every object in Cw≤0 is
an extension of objects in a single negative weight and for those it is clear that they
are mapped to objects in a single positive degree. A similar argument works for the
positive ones. The converse (1a)⇒ (1) is clear.

To see (2)⇒ (2a) use the fibre sequence

(4) mapC(X,DX)hC2 → Ϙ(X)→ LϘ(X)

and note that mapC(X,DX) is connective as mapping spectra between objects in
the heart are always connective. The implication (2a) ⇒ (2b) works as (1) ⇒ (1a)
and for (2b) ⇒ (2c) we simply use (4) again and the fact that mapC(X,DX)hC2 is
connective by (1a). Finally (2c)⇒ (2) is clear. �

Note that this in particular shows that we can use the duality to characterize the
objects of negative weight by the fact that the dual is of positive weight (as we have
done in Dperf(R)).

Definition 8.14. We say that a Poincaré object X of dimension n is strictly n-
dimensional (with respect to a weight structure) if it lies in Cw∈[−n,0]. Similary we
say that it is concentrated in the middle dimension if it lies in Cb−n/2c≤w≤d−n/2e.
Similar for a Lagrangian we say that it is concentrated in the middle dimension if
it is in Cb−n/2c≤w≤b−n/2c.

.
We define for a weight structure

Ln(C, Ϙ, w) :=
{strictly n-dimensional Poincaré objects}

{strictly n-dimensional metabolic Poincaré objects}
for n ≥ 0 and for n ≤ 1 we define

Ln(C, Ϙ, w) :=
{middle dimensional n-dimensional Poincaré objects}
{strictly n-dimensional metabolic Poincaré objects}

More generally we define the Witt group

Wn(C, Ϙ, w) =
{n-dimensional Poincaré objects concentrated in the middle dimension}
{those that admit a Lagrangian concentrated in the middle dimension}

Theorem 8.15. For a (not necessarily bounded) weight structure on a Poincaré
∞-category the canonical map

Ln(C, Ϙ, w)→ Ln(C, Ϙ)
is an isomorphism.

Proof. The proof works as before: for a given n-dimensional Poincaré object... �
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One can in fact also generalize the argument we had in the case of Dperf(R) to
see that if LϘ sends the heart to m-connective objects for some m then we can
described the L-groups Ln(C, Ϙ) by complexes conentrated in the middle dimension
for n ≤ m. In particular if the functor Ϙ is homogenous this works for all n. Also
note that in particular the group L0(C, Ϙ, w) only depends on the additive category
Cw♥ together with the restricted quadratic functor Ϙ|Cw♥ . In fact we can make the
following definition:

Definition 8.16. An additive Poincaré-∞-category is an additive ∞-category A
together with a functor Ϙ : Aop → Sp≥0 such that we have a natural equivalence
BϘ(X,Y ) ' mapA(X,DY ) for some self equivalence D : Aop → A, where BϘ is the
second cross effect defined as in the stable situation.

In such a situation we can define L0 and it agrees with L0 of the Poincaré-∞-
category by the above result. We will in fact see soon that the additive Poincaré-
∞-category (Cw♥, Ϙ|Cw♥) uniquely determines (C, Ϙ, w).

We also want to deduce a similar results for the Grothendieck–Witt group. For an
additive Poincaré-∞-category (A, Ϙ) we define GW0(A, Ϙ) as the group completion
of isomorphism classes of Poincaré objects in A.

Theorem 8.17. For a given Poincare ∞-category with a bounded weight structure
the canonical map

GW0(Cw♥, Ϙ|Cw♥)→ GW0(C, Ϙ)
is an isomorphism.

Proof. We argue that the map is surective and injective. For surjectivity we note that
by algebraic surgery we find that any Poincaré object X is cobordant to a Poincaré
object X ′ concentrated in degree 0. Thus we find that in GW0 that X ⊕X ′ admits
a Lagrangian L, i.e. is equivalent to

[X] + [X ′] = [hyp(L)]

for some L ∈ C. Since X ′ lies in the image of our map it thus suffices to show that
[hyp(L)] lies in the image. But this follows from the fact that the diagram

K0(Cw♥)
hyp
//

��

GW0(Cw♥, Ϙ|Cw♥)

��

K0(C)
hyp

// GW(C, Ϙ)

commutes and the left vertical map is an isomorphism.
To be finished. �

Corollary 8.18. We have an exact sequence

L1(C, Ϙ, w)→ K0(Cw♥)C2 → GW0(Cw♥, Ϙ|Cw♥)→ L0(C, Ϙ, w)→ 0

Moreover any strictly metabolic object X ∈ Cw♥ is stably hyperbolic. That is for a
Lagrangian L → X we have that there exists a Poincare object Y ∈ Cw♥ such that
X ⊕ Y is equivalent to hyp(L)⊕ Y .

Proof. Follows from 6.12 by combining Theorem 8.17, Theorem 8.15 and Proposition
8.11. For the second part note that �
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9. T-structures

Now we want to treat a second helpful device similar to weight structures, namely
t-structures.

Definition 9.1. A t-structure on a stable ∞-category C consists of two full, (satu-
rated?) subcategories

Cτ≥0, Cτ≤0 ⊆ C
such that the following axioms are satisfied:

(1) Cτ≥0 is closed under positive shifts and Cτ≤0 under negative shifts.
(2) For X ∈ Cτ≥1 = C≥0[1] and Y ∈ Cτ≤0 we have that [X,Y ] = 0.
(3) For every X there is a cofibre sequence

X ′ → X → X ′′

with X ′ ∈ Cτ≥1 and X ′′ ∈ Cτ≤0.

The definition is in some informal sense dual to that of a weight structure. But we
will see now that this makes a huge difference as everything in a t-structure is much
more canonical and rigid. We will use similar terminology as for weight structures:

Cτ≥n := Cτ≥0[n]

Cτ≤n := Cτ≤0[n]

Cτ∈[a,b] := Ca≤τ≤b := Cτ≥a ∩ Cτ≤b
Cτ♥ := Cτ∈[0,0] .

The latter full subcategory will be refered to as the heart of C. The t-structure will
be called bounded if every object X ∈ C lies in Cτ∈[a,b] for finite a and b.

Example 9.2. Let R be a ring. Then we define a t-structure on the derived ∞-
category as follows: the connective objects D(R)≥0 are the connective chain com-
plexes, that is those chain complexes X ∈ D(R) with Hi(X) = 0 for i < 0. The
truncated ones D(R)≤0 are the chain complexes with Hi(X) = 0 for i > 0. For the
mapping property we observe that if X is concentrated in degrees ≥ 1 then we have
a projective replacement which is also concentrated in positive degrees. Thus the
claim easily follows.

We then consider for every X ∈ D(R) represented as

...→ X2 → X1
d0−→ X0 → X−1 → ...

the objects

X ′ =
(
...→ X2

d1−→ ker(d0)→ 0→ 0→ ...
)

and

X ′′ = (...→ 0→ 0→ X0/Im(d0)→ X−1 → ...) .

Then there is a the desired fibre sequence X ′ → X → X ′′.
The heart of this t-structure is given by the ordinary category of R-modules ModR

(no further condition like projective).

Example 9.3. In general there is no analogue of the t-structure of the previous
example on the perfect derived category Dperf(R) ⊆ D(R) since the chain complexes
X ′ and X ′′ from the factorization are in general not perfect. The problem is that
the homology if a perfect chain complex is in general not perfect. But recall that
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a ring has global (projective) dimension ≤ d if every R-module M has a projective
resolution of length at most d, that is

(...→ 0→ Pd → Pd−1 → ...→ P0 →M) .

When R is in addition Noetherian and M is finitely generated then one can find
such a resultion where the Pi are even finitely generated. In this case we have a
t-structure with

Dperf(R)≥0,Dperf(R)≤0 ⊆ Dperf(R)

being the respective connective and coconnective ones. Axioms (1) and (2) are
clearly satisfied and for the third we have to argue that

X ′ =
(
...→ X2

d1−→ ker(d0)→ 0→ 0→ ...
)

is perfect. If we assume that X is strictly perfect, then all the Xi are finitely
generated projective and by a filtration argument it suffices to see that ker(d0)[1] is
perfect. But then this follows since can be replace by a strictly perfect one.

The heart of this t-structure is given by the ordinary category of finitely generated
R-modules (not necessarily projective).

Example 9.4. Let R be a connective ring spectrum. Then there is a t-structure
on ModR given by (ModR)≥0. If π0(R) is Noetherian of finite global dimension
and compact as an R-module then this induces a t-structure on ModωR. This is for
example the case for R = ku. The latter t-structure is however not bounded. For
boundedness we need R to be truncated.

Definition 9.5. We say that a weight structure on a stable ∞-category is (left)
adjacent to a t-structure if Cw≥0 = Cτ≥0.

Example 9.6. In the case D(R) and Dperf(R) for R of Noetherian of finite global
dimension the (standard) t-structure and weight structure are adjacent. There is
always a functor Cw♥ → Ct♥ given by P 7→ τ≤0P . In this case this is a full inclusion,
but in general this need not happen (for example consider modules over a CDGA
R[x]/x2 with x in degree 1).

Lemma 9.7. We have equalities

Cτ≥0 = {B ∈ C | [B,A] = 0 for all A ∈ Cτ≤−1}
Cτ≤0 = {A ∈ C | [B,A] = 0 for all B ∈ Cτ≥1}

Both of these subcategories are closed under all colimits and extensions.

Proof. Left to the reader as an exercise. �

Again this means that a t-structure is highly overdetermined like a weight struc-
ture. Now we come to the first real difference to a weight structure:

Lemma 9.8. For X ∈ Cτ≥1 = C≥0[1] and Y ∈ Cτ≤0 we have that MapC(X,Y ) = 0
(the mapping space, not the mapping spectrum). Moreover the inclusion Cτ≥n ⊆ C
admit right adjoints

τ≥n : C → Cτ≥n
and the inclusions Cτ≤n ⊆ C admit left adjoints

τ≤n : C → Cτ≤n
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so that the sequence
τ≥n+1X → X → τ≤nX

with its unique nullhomotopy (by the first assertion) becomes a fibre sequence. In
fact every other fibre sequence X ′ → X → X ′′ with X ′ ∈ Cτ≥n+1 and X ′′ ∈ Cτ≤n is
canonically equivalent to this one.

Proof. The first statement about the mapping space follows immediately from axiom
(2) by shifting source or target. For the right adjoint we simply choose X ′ → X
such that X ′ is in τ ≥ n and the cofibre is in τ<n. Then one directly gets that for
every object Y ∈ C≥n the space of maps from Y to X is equivalent to the space of
maps from Y to X ′ as the the space of maps from Y to X/X ′ is contractible. The
rest follows similary and is left as an exercise. �

For a given object X ∈ C we shall write

π♥n (X) := τ≥0τ≤0X[−n] ∈ C♥ .
One should generally see t-structures as a way of making homotopy groups and
Postnikov towers precise. In contrast to weight structures which made cell structures
precise. The analog of the cell decomposition of an object os the Postnikov tower

...→ τ≥n+1X → τ≥nX → τ≥n−1X → ... → X

for every object X ∈ C which is finite for every X iff the weight structure is bounded.
The subquotients lie in shifts of the heart (and are given by the homotopy groups).
The advantage here is that the Postnikov tower is fully functorial.

Lemma 9.9. For a t-structure the heart Cτ♥ is an ordinary abelian category.

Proof. By the truncatedness of the mapping spaces the heart is an ordinary category.
The heart is closed under finite biproducts, thus it is additive. It has kernels and
cokernels which are given as follows:

coker(A→ B) = τ≤0(cof(A→ B)) .

and dually for kernels. Then a monomorphism is precisely a morphism such that
the cofibre is 0-truncated and an epimorphism is a morphism such that the fibre is
connective. It follows that a square

A //

��

B

��

0 // C

with A→ B mono and B → C epi is a pullback in the heart if it is a pushout. �

Remark 9.10. If C admits a bounded t-structure then it is idempotent complete.
To see this assume that we have an idempotent e : X → X. We get induced
idempotents τ≥0e and τ≤0e and e splits precisely if τ≥0(e) and τ≤0(e) do. Then
using this one can inductively shows that e splits precisely of πn(e) splits for each n.
But this is a morphism in the heart and thus in an abelian category which is clearly
idempotent complete (as here splitting an idempotent is a finite limit in contrast to
the ∞-categorical situation).

Definition 9.11. For an abelian category A we define the K-theory as

K0(A) =
{Iso classes of objects in A}

{[B] = [A] + [C] for a short exact sequence A→ B → C.}
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Proposition 9.12. For a bounded t-structure the map

K0(Cτ♥)→ K0(C) [A] 7→ [A[0]]

is an isomorphism.

Proof. The morphism is clearly well-defined. We have an inverse morphism given
by X 7→

∑
(−1)nπ♥n (X). This is also well-defined (by the long exact seuqence).

One composite is clearly the identity and the other one by the existence of finite
Postnikov towers. �

Remark 9.13. Assume that C admits adjacent bounded weight and t-structures.
Then we get an isomorphism

K0(Cw♥)→ K0(Ct♥) P 7→
∑

(−1)nπ♥n (P ) .

In the case of an ordnary ring it sends [P ] to [P ]. The inverse sends M ∈ Ct♥ to∑
(−1)nPn for a cell structure with subquotients Pi in the heart (i.e. a projective

resolution in the ordinary case).

Example 9.14. If C has adjacent weight and t-structures then neither boundedness
implies the other. For the ‘standard’ structures on Spfin only the weight structure
is bounded. Conversely consider the bounded derived category Db(Z[C2]). This
has a bounded t-structure with heart ModZ[C2] and a weight structure with heart
ProjZ[C2]. But the object Z does not admit a finite weight resolution.

Definition 9.15. For a given t-structure on a stable ∞-category C we define the
global dimension as

dim(C, τ) := min
{
d | mapC(X,Y ) is (−d)-connective for X,Y ∈ Cτ♥

}
if this number is finite or ∞ else.

Example 9.16. If a ring R (with involution) has global projective dimension d then

dim(D(R), τ) = d

and the same for Dperf(R) if R is noetherian. This follows since the projective
dimension can be defined in terms of vanishing of Ext groups. For a field k we
get that dim(D(k), Ϙs, τ) = 0. For R = Z we have dim(D(Z), Ϙs, τ) = 1 as it has
projective dimension 1. The dimension of ku with its standard t-structure is 4
(exercise).

Lemma 9.17. Assume that C admits a weight structure compatible with the duality
and adjacent to the t-structure. Then we have:

dim(C, τ) = min
{
d | Cτ♥ ⊆ Cw∈[0,d]

}
= min

{
d | D(Cτ♥) ⊆ Cτ≥−d

}
Proof. The second equality is clear by Lemma 8.13. For the first we note that if
X ∈ Cw∈[0,d] and Y ∈ Cw≥0 then

mapC(X,Y ) = mapC(X[−d], Y )[d]

is (−d)-connective since mapC(Y [−d], X) is connective. If conversely for a given X
the spectrum mapC(X,Y ) is −d-connective the it follows that [X[−d − 1], Y ] = 0
for every Y ∈ Cw≥0. Thus X is in w ≤ d. �
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Now we want to perform a version of surgery in the setting of a (not-necessarily
bounded) t-structure on a Poincaré-∞-category. We will do this first in the setting
of a quadratic functor, i.e. Ϙ = ϘsB for a symmetric bilinear functor.

Lemma 9.18. Assume that a t-structure on (C, ϘsB) is of global dimension d.

(1) Every Poincaré object (of dimension 0) is bordant to one with τ ≥ −d/2.
(2) Every Poincaré object of dimension n ∈ Z is bordant to one with τ ≥ −d+n

2 .

Proof. We first prove the first part: For a Poincaré object X consider the morphism

X → τ<−kX

with k = d
2 . We set S := D(τ≤−kX). By assumption this has connectivity

τ > k − d = d
2 − d = −k.

As a result we find that MapC(S, τ<−kX) = 0. Thus

Ϙ(S) = mapC(S,DS)hC2 = mapC(S, τ<−kX)hC2

has vanishing π0. As a result we can perform surgery on the morphism

s : S → X

dual to X → τ<−kX. But this surgery result in an object Xs given as the cofibre of

S → τ≥−kX

which is (−k)-connective.
For the second part we consider the Poincaré-∞-category (C, Ϙ[−n]) with the

duality given by

X 7→ (DX)[−n] .

This is also symmetric (with the shifted B) and of dimension d+n so that the second
part immediately follows from the first. �

In particular this implies that if there is an adjacent weight structure compatible
with the duality (i.e. the duality preserves the weight heart) then the resulting
Poincaré object has weight in

w ∈ [−d+n
2 , d−n2 ] .

Equivalently this means that is has weight length ≤ d + 1 and is centered around
the middle dimension, which might be easier to remember. We make this precise in
the following definition:

Definition 9.19. A Poincaré object X of dimension in (C, Ϙ) is said to have lenght
≤ k if it lies in the weight intervall

w ∈ [−n−k+1
2 , −n+k−1

2 ]

Similarly a Lagrangian is said to have length ≤ k if it lies in the same weight interval.

Note that depending on the parity of n+ k this might actually mean length k or
k − 1 centered around the middle dimension.

Corollary 9.20. Assume C admits adjacent weight and t-structures, the dimen-
sion of (C, τ) is zero and the duality preserves the weight heart. Then we have that
Lodd(C, ϘsB) = 0. In particular the odd symmetric L-theory Ls∗(k) of fields vanishes.
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The even dimensional groups are given by the respective Witt groups and the iso-
morphism is implemented by the map

L2n(C.ϘsB) 7→W2n(C, ϘsB) C 7→ Hn(C)

Proof. For every n we get that the objects can be represented by objects with

w ∈ [−n
2 ,−

n
2 ] .

For n odd this intervall is empty. �

The even L-groups in the last example can be represented by objects in a single
weight. The question is whether they agree with the respective Witt groups. The
question is a question about Lagrangians and we have the following result.

Lemma 9.21. Assume that C admits adjacent weight and t-structures and that the
dimension of (C, τ) is d. If a Poincaré object X of weight length ≤ d + 1 admits a
Lagrangian, then there exist Poincaré objects M,M ′ of weight length ≤ d+ 1 which
admit Langrangians of weight length ≤ d+ 1 such that

X ⊕M 'M ′ .

Proof. First we perform surgery from above as in Lemma 9.18 to reduce a given
Lagrangian L to have τ ≥ −d+n

2 − 1. Then we need to kill the bottom weight cell
as in Section 7. Note that for this last step no assumption on Ϙ was necessary. �

Proposition 9.22. Assume C admits adjacent weight and t-structures, the dimen-
sion of (C, τ) is d and the duality preserves the weight heart. Then we have that

Ln(C, ϘsB) =
{Poincaré objects of weight length d+ 1}

{Those with Lagrangians of weight length d+ 1}
.

Corollary 9.23. Assume C admits adjacent weight and t-structures, the dimension
of (C, τ) is ≤ 1 and the duality preserves the weight heart. Then for every n the
morphism

Wn(C, Ϙ, w)→ Ln(C, ϘsB)

is an isomorphism.

Corollary 9.24. For R = Z or more generally a Dedekind ring we have that

Lsn(R) = W s
n(R) .

Also recall that in the quadratic case we found that Lqn(R) = W q
n(R) for all n.

The upshot of the previous discussion is that the symmetric L-groups can some-
how be understood, especially if the dimension d is small. The question is now what
we can do about an arbitrary Ϙ in the presence of adjacent weight and t-structures.
We have already seen that if Ϙ is connective on the weight heart then we can under-
stand the L-groups until dimension ≤ 1 as the Witt groups. The higher ones where
described in terms of longer complexes and thus remain somewhat mysterious (es-
pecially since the lenght tends to ∞ with n and does not remain fixed).

We would like to use t-structures to simplify the situation here as well. To this
end we make the following definition
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Definition 9.25. Let (C, Ϙ) be a Poincaré-∞-category with a t-structure. We say
that the two structures are compatible if the fibre

LϘ(X) = fib(Ϙ(X)→ BϘ(X,X)hC2

is a coconnetive spectrum (i.e. in Sp≥0) for each X ∈ C≥0.

Remark 9.26. Assume that the duality of C sends C≥0 to C≤0. Then a t-structure
is compatible precisely if Ϙ sends connective objects to coconnective spectra. This
follows easily from the cofibre sequence

LϘ(X)→ Ϙ(X)→ mapC(X,DX)hC2

using that mapC(X,DX) is connective in this case. If there is an adjacent weight
structure then the condition that D(C≥0) ⊆ C≤0 is equivalent to the assertion that
Cw≤0 ⊆ Cτ≤0. In particular the weight heart is contained in the t-heart and thus is
an ordinary category. This is of course satisfied for for derived categories of rings
but not for ring spectra.

If the t-structure is moreover bounded then it is compatible with Ϙ precisely if Ϙ
sends the heart to coconnective spectra.

Example 9.27. The symmetric functor ϘsB is compatible with the t-structure if D
sends C≥0 to C≤0. The quadratic functor is generally not compatible with the usual
t-structures (unless we are in a situation where it agrees with the symmetric one).

Theorem 9.28. Assume C admits adjacent weight and t-structures16 and a Poincaré-
structure Ϙ such that the duality preserves the weight heart and such that Ϙ is com-
patible with the t-structure. We denote the dimension of (C, Ϙ, τ) by d. Then we
have that

Ln(C, ϘsB) =
{Poincaré objects of lenght d+ 1}

{Those with Lagrangians of length d+ 1}
.

for n ≥ dim(C, Ϙ, τ).

Proof. We will verbatim carry the proofs of Lemma 9.18 and Lemma 9.21 over. One
simply needs to work out that the surgery still works: for an n-dimensional Poincaré
object we want to perform surgery on the morphism

s : S → X

with S = D(τ<−kX)[−n] and k = d+n
2 . Thus we need to verify that πn(Ϙ(S)) = 0.

This homotopy group sits in an exact sequence

πn(LϘ(S))→ πn(Ϙ(S))→ πn(mapC(S,DS)hC2) .

The latter term is zero since

πn(mapC(S,DS)hC2) = π0(mapC(S, τ<−kX)hC2)

and S has connectivity τ > (k − d − n) = −d+n
2 = −k. Thus it suffices to verify

that the first term πn(LϘ(S)) is zero. By assumption of compatiblity as in Definition
9.25 we find that LϘ(S) has τ < k. Now the claim follows as soon as n ≥ k. This is
equivalent to

n ≥ d = dim(C, Ϙ, τ) .

16The weight structure is not really necessary. In presence of a t-structure one can also express
a similar result in terms of connectivities. But we find the formulation in terms of weight intervals
more useful and also the last surgery step for Lagrangians requires it.
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For Lagrangians the argument works the same. �

Corollary 9.29. If C admits adjacent weight and t-structures and the t-structure is
compatible. Then for any quadratic functor Ϙ the L-groups Ln(C, Ϙ) agree with the
symmetric ones (i.e. with Ln(C, ϘsBϘ)) for n ≥ dim +3. In particular in the case of
Noethering rings of finite global dimension they become 4-periodic above the critical
dimension.

Proof. We have a canonical map Ln(C, Ϙ)→ Ln(C, Ϙs). Using Theorem 9.28 we need
to argue that the functors τ≥nϘ and τ≥nϘ

s agree on objects X with τ ≥ −n+d
2 as

long as n > d+ 2. Using the fibre sequence

LϘ(X)→ Ϙ(X)→ Ϙs(X)

it suffices to show that π∗(L
Ϙ(X)) vanishes for ∗ ≥ n− 1. But we have that

LϘ(X) = LϘ
(
X[n+d

2 ]
)

[n+d
2 ]

is (n+d
2 )-truncated. Thus we need that

n− 1 > n+d
2

which is equivalent to n > d+ 2. This shows the bijectivity. �

Remark 9.30. A variant of this argument shows that in degree n = dim +2 the
canonical map Ln(C, Ϙ)→ Ln(C, Ϙs) is injective.

Now assume that we have adjacent weight and t-structures compatible with the
duality. Our results about the quadratic and symmetric functors show that for the
quadratic functor one gets that Ln(C, Ϙ) can in all degrees be descibed in terms of
objects of lenfth ≤ 2. For the symmetric functor it can be described in alle degrees
as objects of weight length d + 1. Now we want to place ourselves in a setting in
between those functors.

Definition 9.31. Assume that C admits adjacent weight and t-structures of dimen-
sion d and a Poincaré structure (not necessarily compatible). Then we define

Ln(C, Ϙ, w, τ) =
{Poincaré objects of lenght k(n)}

{Those with Lagrangians of length k(n)}
where

k(n) =


2 for n ≤ 1

n+ 1 for 1 ≤ n ≤ d
d+ 1 for n ≥ d

Theorem 9.32. Assume that (C, Ϙ) admits adjacent weight and t-structures and a
Poincaré structure compatible with both. Then we have that

Ln(C, Ϙ, w, τ)→ Ln(C, Ϙ)
is an isomorphism.

Note that in the case d = 0 this does not make a difference in degree 0 as length
2 in fact also means lenght 1 due to the fact that the intervall would be [−1

2 ,
1
2 ].

Lemma 9.33. Assume that a Poincaré ∞-category (C, Ϙ) admits adjacent bounded
weight and t-structures such that Cw♥ ⊆ Cτ♥. Then Ϙ is compatible with both pre-
cisely if it sends the weight heart Cw♥ to the heart Spτ♥ ' Ab.
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Proof. According to the definitions and Remark 9.26 we have to verify that if Ϙ sends
the weight heart to connective spectra then the following are equivalent:

(1) Ϙ sends the t-heart to coconnective spectra
(2) Ϙ sends the weight heart to coconnective spectra.

Using the fibre sequence

LϘ(X)→ Ϙ(X)→ mapC(X,DX)hC2

we can verify that the two similar assertions with Ϙ replaced by LϘ are equivalent.
But then by resolving objects in the heart this easily follows. �

Corollary 9.34. Assume a Poincaré-∞-category (C, Ϙ) admits adjacent weight and
t-structures, the dimension is 1 and the duality is compatible with the weight struc-
ture. Then the morphism

Wn(C, Ϙ, w)→ Ln(C, Ϙ)
is an isomorphism for all n under one of the following assumptions:

(1) The quadratic functor Ϙ is homogenous, i.e. Ϙ = ϘqB.
(2) The quadratic functor Ϙ is cohomogenous, i.e. Ϙ = ϘsB.
(3) The quadratic functor is compatible with the weight and the t-strucutre.

Proof. Clear using the definition of the Witt group. �

Remark 9.35. The Witt group W0(C, Ϙ, w) only depends on Cw♥ and π0(Ϙ|Cw♥).
It has generators given by objects X ∈ Cw♥ together with an element q ∈ π0(Ϙ(X))
such that the adjunct map X → DX is an equivalence.

10. Computations of L-groups

Now we want to use our previous discussions to compute L-groups. We start with
the case of fields k. If the characteristic of k is different from 2 then the quadratic
and symmetric L-groups agree and we shall simply write L∗(k) for those. The same
applies for the Witt group which we simply write as W (k).

Proposition 10.1. Let k be a field of characteristic different from 2. Then we find
that L∗(k) = W0(k) for ∗ = 4n and L∗(k) = 0 else. The isomorphism is implemented
by

L4n(k)→W0(k) C 7→ H2n(C) .

where H2n(C) is equipped with the form of Construction 5.3 .

Proof. We already now that the groups are 4-periodic, that they vanish in odd
degrees and agree with the respective Witt groups from Corollary 9.20 and Corollary
9.34. Thus we need to show that the Witt group W2(k) vanishes. This is the Witt
group of antisymmetric bilinear forms:

Let V be a vector space with such an antisymmetric form β. If V admits a non-
trivial vector v then we find that β(v, v) = 0 by antisymmetry and 1

2 ∈ k. Since
β is non-degenerate we find another vector w ∈ V such that β(v, w) = 1. We set
V0 = 〈v, w〉 ⊆ V and get an orthogonal decomposition

V = V0 ⊕ V ⊥0 .

To see this note that for an element x ∈ V the element

x− β(x,w)v − β(w,w)β(x, v)v + β(x, v)w
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lies in V ⊥0 . But 〈v〉 is a Lagrangian in V0 so that in the Witt group we have that
[V ] = [V ⊥0 ]. Inductively this show the claim.

Finally the morphism

L4n(k)→W0(k) C 7→ H2n(C) .

is well-defined since it preserves Poincaré objects and for a Lagrangian in C we get
an induced Lagrangian. The composition with the isomorphism W0(k)→ L4n(k) is
clearly the identity. �

For any element u ∈ k× we get a form on the 1-dimensional k-vector space
represented by u. We denote the image of this element in W (k) be [u].

Proposition 10.2. Let k of characteristic 6= 2. Then W (k) is generated by elements
[u] for u ∈ k×. If k is additionally quadratically closed we have that the morphism

dim : W (k)→ Z/2
is an isomorphism. For k = R we have that

sgn : W0(R)→ Z
is an isomorphism.

Proof. Given any vector space V with a symmetric, non-degenerate form. There is a
vector with β(v, v) 6= 0 since otherwise β would vanish by the polarization formula.
We set V0 = 〈v〉 and get that V = V0 ⊕ V ⊥0 and continue inductively. This gives an
orthogonal basis and shows the generators description.

In the case of a quadratically closed field we claim that the form on k ⊕ k given
by the diagonal matrix with entires u and u′ for u, u′ ∈ k× is metabolic. To this end
we observe that the vector (

1,

√
− u
u′

)
is isotropic and thus defines a Lagrangian.

Finally by Sylvester’s theorem the signature is well defined on the Witt group. It
is an isomorphism since [u] = [±1]. �

Corollary 10.3. If k is a quadratically closed field of characteristic 6= 2 then

L4n(k)→ Z/2 [C] 7→ [dimH2n(C)]

is an isomorphism. The map

L4k(R) 7→ Z [C] 7→ [sgnH2n(C)]

is an isomorphism.

Proposition 10.4. For the complex numbers C with its canonical involution we find
that

L2n(C,−)→ Z C 7→ sgnHn(C)

is an isomorphism and Lodd(C,−) = 0.

Proof. The odd groups vanish by our general results for 0-dimensional Poincaré
categories. We claim that the groups are 2-periodic. This follows since hermitian
forms β with β(v, w) = β(w, v) and antihermitian forms with β(v, w) = −β(w, v) are
in 1-1 correspondence by β 7→ iβ. Another way of saying that is that (Dperf(C), Ϙ)
and (Dperf(C), Ϙ[2]) are equivalent. Thus we are left to compute L0. But this again
follows by Sylvester’s theorem. �
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Remark 10.5. One can more generally show that for any complex, unital C∗-
algebra A one has a natural isomorphism L∗(A, ∗) ∼= Ktop

∗ (A).

In the case that char(k) 6= 2 we actually have that W (k) is a ring and that it has
a canonical ideal I ⊆W (k) given by the kernel of dim : W (k)→ Z/2.

Theorem 10.6 (Voevodsky, Milnor Conjecture). The associated graded of this fil-
tration is given by

In+1/In = Kn
M (k)/2 = Hn

ét(k,F2) .

Now we want to investigate the case of fields of characteristic 2. In this case we
have to ditinguish between the symmetric and the quadratic L-groups Ls∗(k) and
Lq∗(k).

Proposition 10.7. Let k be a field of characteristic 2. Then we have

Ls∗(k) =

{
W s

0 (k) for ∗ even

0 for ∗ odd
Lq∗(k) =

{
W q

0 (k) for ∗ even

0 for ∗ odd .

Proof. The 2-periodicity is shown in Proposition 6.5 and the symmetric case follows
from Theorem 9.20. The fact that Lq0(k) = W q

0 (k) follows from Proposition 7.11.
Thus it only remains to show that Lq1(k) vanishes. We already know that any
Poincaré object can be assumed to lie in degrees [−1, 0] (here weight and τ agree). In
this case however we can still perform surgery: consider a split map H−1(X)[−1]→
X. Then we have that π1(H−1(X)[−1]) = 0 so that we can perform surgery. The
resulting object is given as the homology of

H−1(X)[−1]→ X → D(H−1(X))[0] = H0(X)[0] .

This homology is zero since this is a cofibre sequence. �

Proposition 10.8. The maps

Arf : W q
0 (F2)→ Z/2 and dim : W s

0 (F2)→ Z/2

are isomorphisms and the canonical map

W q
0 (F2)→W s

0 (F2)

is zero.

We recall that the Arf invariant (in its easiest form) is an invariant for non-
degenerate quadratic spaces (V, q) over F2. It s also called the democratic invariant.
and is given by the value of F2 that occurs more often among the values of the
quadratic form q(v) as v ranges through V , another (equivalent) way of writing that
is as

(5) Arf(V, q) =
1

2dimV/2

(
#{v ∈ V | q(v) = 0} −#{v ∈ V | q(v) = 1}

)
∈ {±1}

There is an implicit claim that this procedure always comes to a conclusion which
is a priori not clear and that the latter desceription always lies in {±1}. We will
verify both claims in the proof.

Proof. For the symmetric case we first note that as in Proposition 10.1 for every
vector v ∈ V with β(v, v) we can split off a 2-dimensional metabolic space. Thus we
can assume that for a given symmetric space (V, β) over F2 we have that β(v, v) = 1
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for each v ∈ V . But then we are at most 1-dimensional since for every vector w 6= v, 0
we would have that

1 = β(v + w, v + w) = β(v, v) + 2β(v, w) + β(w,w) = 0 .

The 1-dimensional space F2 with the form (x, y) 7→ xy exists and is detected by the
invariant dimension modulo 2 (which is obviously well-defined).

Now assume that (V, q) is a quadratic space over F2. For the associated symmetric
bilinear form β(v, w) = q(v+w)−q(v)−q(w) we have that β(v, v) = q(2v)−2q(v) = 0
so that the underlying symmetric space is even dimensional and the class in the
symmetric Witt group vanishes.

If q(v) = 0 for some v then we can split off a 2-dimensional metabolic space
as follows: as before we pick w with β(v, w) = 1 and then form the orthogonal
complement. This is metabolic since v is a Lagrangian. In fact it is hyperbolic: a
priori it is not true that q(w) = 0. But if q(w) = 1 then we replace w by w + v and
get that

q(w + v) = q(w) + q(v) + β(v, w) = 1 + 0 + 1 = 0′.

Using this procedure to split off hyperbolic spaces we can therefore assume that
q(v) = 1 for each v ∈ V . Assume that v 6= w are non-trivial elements of V , then the
associated bilinear form is given by

β(v, w) = q(v + w)− q(v)− q(w) = 1

Thus for a third z ∈ V \ {0, v, w} we get that

β(v + z, w) = β(v, w) + β(z, w) = 1 + 1

so that v+ z = w. Thus the dimension of V can at most be 2. And indeed the form

q : V = (F2)2 → F2

that sends each non-trivial element to 1 is indeed quadratic since it can be written
as

q(v) = v2
1 + v1v2 + v2

2 .

As a result the Witt group is generated by this single element V and we want to
determine its order. Clearly V ⊕ V admits the diagonal V as a Lagrangian (since it
is isotropic and of half the dimension). Thus 2[V ] = 0. In order to show that [V ]
is non-trivial it suffices to show that the Arf invariant defined as in (5) indeed is a
well-defined homomorphism

Arf : W q
0 (F2)→ (Q, ·)

since Arf(V ) = 1. It is clear that Arf is additive by a direct verification. Thus we
have to see that it indeed vanishes on metabolics. But this is also clear since every
metabolic is a sum of hyperbolics by the above argument splitting off hyperbolics
and for a 2-dimensional hyperbolic H we have that Arf(H) = 1

2(3− 1) = +1.
Finally the claims about the Arf invariant also follow. �

Remark 10.9. In fact a slight elaboration of the above arguments proves that any
non-degenerate symmetric form over F2 is isomorphic to one of

Hn, Hn ⊕ F2, H
n ⊕ F2 ⊕ F2

where H = hyp(F2) and F2 carries the form (x, y) 7→ xy. Every non-degenerate
quadratic form over F2 is isomorphic to

Hn, Hn ⊕ V
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where V = (F2)2 is given by q(v) = 1 for all v 6= 0 and H is the hyperbolic from on
(F2)2 given by q(v) = v1v2.

Corollary 10.10. We have the isomorphisms in L-theory given by

Lq2n(F2)→ Z/2 [C] 7→ [ArfHn(C)]

and
Ls2n(F2) 7→ Z/2 [C] 7→ [dimHn(C)]

is an isomorphism. given by

Proposition 10.11. Assume that k is a general field of characteristic 2, then W s
0 (k)

is generated by 1-dimensional spaces. If k is quadratically closed then W s
0 (k) = Z/2

given by the dimension. If k is even algebraically closed then W q
0 (k) = 0 .

Proof. Let V be a symmetric space over k. As in the proof of Proposition 10.8 we
can assume that β(v, v) 6= 0 for each v ∈ V \ 0. Then we can inductively find an
orthogonal basis so that we see that the Witt ring is generated by one dimensional
symmetric spaces. Clearly two 1-dimensional spaces (k, α) and (k, β) are equivalent
if α and β differ by a square, which is always the case in a quadratically closed field.
Moreover for every space V the space V ⊕ V has V as a Lagrangian, so that it is
2-torsion.

Over algebraically closed fields any two quadratic forms of the same dimension
are isomorphic. This implies the last claim since the dimension has to be even. �

Now we turn to the case of the integers. We have the following result:

Theorem 10.12. The L-groups of the integers are given by

Lq∗(Z) =


Z for ∗ = 4n

Z/2 for ∗ = 4n+ 2

0 else

and Ls∗(Z) =


Z for ∗ = 4n

Z/2 for ∗ = 4n+ 1

0 else

The canonical map Lq∗(Z) → Ls∗(Z) is given by multiplication with 8 in degree 4n
and zero else. Signature mod 8, Kervaire, deRham invariant, Signature

We will prove this result now. We start with degree 0. First observe that a
quadratic form over Z is uniquely detemined by its associated symmetric bilinear
form β via the fomula

q(m) = β(m,m)
2 .

Thus it is a property of symmetric bilinear forms to be quadratic. This is the case
precisely if β(m,m) is even for each m ∈M . In this case the form is also called even
and otherwise odd. This behaviour is also called the type of a symmetric bilinear
form. Moreover a form is called definite if it is either positive or negative definite,
otherwise indefinite. We will use the following result (see for example Serre’s book
Cours d’arithmétique for a proof).

Theorem 10.13 (Hasse-Minkowski). Two unimodular, indefinite forms over Z are
isomorphic precisely if they have the same dimension, signature and type.

Proposition 10.14. The signature morphism

Ls4n(Z)→ Ls4n(R)→ Z C 7→ sgn (H2n(C)⊗ R)

is an isomorphism.
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Proof. We first compute W s
0 (Z). Given any two unimodular symmetric bilinear

forms over Z of the same signature. We want to show that they represent the same
element in the Witt group.

We can add a hyperbolic forms to make both indefinite without changing the
classes in the Witt group (the hyperbolic form is clearly indefinite). We observe
that dim− sgn is always twice the number of negative diagonal entries, in particular
always even. As a result we find that our two forms can be made of equal dimension
by adding hyperbolic forms. Now both of our forms become isomorphic after adding
the one dimensional trivial form, which makes them odd.

This shows injectivity of the signature morphism. Surjectivity is clear. �

Proposition 10.15. The morphism

Lq4n(Z)→ Z C 7→ sgn(H2n(C)⊗Q)
8

is a well-defined isomorphism.

Proof. It is clear that Lq4n(Z) → Ls4n(Z) → Z is injective (by the same argument
as above) since hyperbolic forms are always quadratic. We now use the fact that
the signature of each quadratic form is divisble by 8. For surjectiivity one uses the
E8-form which is an 8-dimensional, unimodular, even form of signature 8 given by

2 0 0 1 0 0 0 0
0 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
1 0 1 2 1 0 0 0
0 0 0 1 2 1 0 0
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 1
0 0 0 0 0 0 1 2


�

Proposition 10.16. The morphism

Arf : Lq4n+2(Z)→ Lq4n+2(F2)→ Z/2 C 7→ Arf (H2n+1(C/2))

is an isomorphism

Proposition 10.17. The morphism

dR : Ls4n+1(Z)→ Z/2 C 7→ dimF2 (H2n(C)[2])

is an isomorphism.

Now we also want to compute the Grothendieck–Witt groups in this generality.
Recall that for a ring R (possibly with involution) we defined the Grothendieck–Witt
groups GWs

0(R) and GWq
0(R) as the group completion of the respective monoids of

unimodular forms. Again if 1
2 ∈ R then the two groups agree and we simply write

GW0(R).

Proposition 10.18. For a field k of characteristic 6= 2 the Grothendieck–Witt
GW0(k) ring is generated by classes [α] for α ∈ k×. It sits in a short exact se-
quence

0→ Z→ GW0(k)→W0(k)→ 0
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If k is quadratically closed then the map

dim : GW0(k)→ Z
is an isomorphism. 17

Proof. The existence of orthogonal bases implies the first claim. For the second
claim we observe that L1(k) = 0 and K0(k)C2 = Z. The last follows since in the
qudratically closed case any 1-dimensional space is isomorphic to (k, 1). �

Example 10.19. We have that GW0(C, id) = Z via dimension and GW0(C, ∗) =
Z⊕ Z via signature and dimension minus signature divided by 2.

Example 10.20. We have that GWs
0(F2) = Z given by dimension and GWq

0(F2) =
Z⊕ Z/2 given by

(dim2 ,Arf) : GWq
0(F2)→ Z⊕ Z/2 .

Example 10.21. The morphism

(sgn,
dim−sgn

2
) : GW0(Z)→ Z⊕ Z

is an isomorphism.

11. Non-abelian derived functors

Assume that we are given a Poincaré-∞-category. Then we recall from Corollary
9.34 that for bounded weight and t-structures we can (at least in theory) compute
the L-groups and compare them to classical invariants. In this section we explain
how to modify a general quadratic functor Ϙ without changing the underlying duality
to be of this specific type. The main result will be the following:

Theorem 11.1. Assume that C admits a bounded weight structure. Then the for-
getful functor

Funq(C)→ Funq(Cw♥)

is an equivalence of ∞-categories.

Here Funq(C) denotes quadratic functors in C and Funq(Cw♥) denotes quadratic
functors (

Cw♥
)op
→ Sp,

in the sense of Eilenberg–MacLane, i.e. reduced functors whose second cross effect
is bilinear. We will deduce Theorem 11.1 from the following result:

Proposition 11.2. Assume that C admits a bounded weight structure. Then the
forgetful functors

Funsif(Ind(C≥0)op,Sp)→ Fun′(Cop
≥0, Sp)→ Fun

((
Cw♥

)op
, Sp
)

are equivalences, where Funsif is the ∞-category that preserves sifted limits and Fun′

is the ∞-category of functors that send pushouts to totalizations. The inverses are
given by left Kan extension.

In fact, Ind(C≥0) is the universal ∞-category obtained from Cw♥ by adjoining
sifted colimits (or equivalently Quillen’s non-abelian derived category) and that C≥0

is the universal ∞-category obtained by adjoining finite geometric realizations.

17In fact the converse is also true: if this map is an isomorphism, then k is quadratically closed.
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Proof. We first note that the first functor is an equivalence. To see this we use that
the forgetful functor

Funfil(Ind(C≥0)op, Sp)→ Fun(Cop
≥0,Sp)

is an equivalence. Moreover a functor preserves sifted colimits precisely if it preserves
finite geometric realizations and filtered colimits.

Now we want to show that the composite morphism is an equivalence. To this
end we claim that Ind(C≥0) is obtained from Cw♥ by adjoining sifted colimits. By
general theory (see HTT), since Cw♥ already admits all coproducts, this is obtained
by the universal ∞-category with all colimits that receives a coproduct preserving
functor from Cw♥, i.e. we have to show that

Ind(C≥0) ' FunΣ((Cw♥)op,S)

In general we have that

Ind(C≥0) ' Funfin(Cop
≥0,S)

so that we have to argue that the restriction

π∗ : Funfin(Cop
≥0,S)→ FunΣ((Cw♥)op,S)

is an equivalence with inverse given by left Kan extension π!. For this we note that
left Kan extension indeed lands in the claim subcategory (exercise) and that by fully
faithfulness the composite π∗ ◦ π! is the identity. It thus suffices to show that the
canonical morphism π! ◦ π∗ → id is an equivalence. We reduced to showing that π∗

detects equivalences. But this is clear since every object of C≥0 is a finite colimit of
objects in Cw♥. �

Proof of Theorem 11.1. It follows immediately from the last Proposition and Propo-
sition 3.14 that we get an equivalence between functor categories

Funq(Cop
≥0) ' Funq(Cw♥) .

Thus everything that is left is to show that the forgetful functor

Funq(C)→ Funq(Cop
≥0)

is an equivalence. To this end we construct an explicit inverse given as the compo-
sition of left Kan extension followed by 2-excisive approximation... �

Remark 11.3. For a given quadratic functor Ϙ defined on the weighty heart we can
give a rather explicit description of the associated functor Ϙ : Cop

≥0 → Sp. Namely

one writes an object X ∈ C as a finite geometric realization of an objects in Cw♥,
i.e.

X = colim∆op Xi

Then Ϙ(X) = lim∆ Ϙ(Xi). This is the description of non-abelian derived functors
given by Dold-Puppe.

Corollary 11.4. For a given stable ∞-category C with a bounded weight structure
there is an equivalence between compatible Poincaré structures on C whose duality
preserves the weight heart and Poincaré structures on Cw♥ 18

18By this we shall simply mean a quadratic functor on Cw♥ with values in spectra such that
the second cross effect is connective and represented by a self-duality. Earlier we had required the
whole functor to take values in connective spectra.



70 THOMAS NIKOLAUS

Recall from our surgery process that we would like our quadratic functor to take
values in connective spectra when evaluated on the heart (or more generally on the
weight-coconnective part).

Corollary 11.5. For every quadratic functor Ϙ on C there are new quadratic functors
Ϙ
′ → Ϙ and Ϙ′ → Ϙ′′ such that when restricted to X ∈ Cw♥ the map

Ϙ
′(X)→ Ϙ(X)

is a connective cover and Ϙ′′(X) = π0(Ϙ)(X). If the duality is compatible with the
weight structure then Ϙ′ is also Poincaré and if the weight heart is an ordinary
category then Ϙ′′ is also Poincaré.

Now we specialize the previous discussion to the case of rings. Let R be a ring
with involution. Then for any Poincaré structure

Ϙ : Projop
R → Ab

we get an induced Poincaré structure

Ϙ : Dperf(R)op → Sp

such that
Ln(Dperf(R), Ϙ) = Ln(Dperf(R), Ϙ, w) .

Moreover we have that GWϘ(R) = GW0(Dperf(R), Ϙ). If R is noetherian of finite
global dimension we even get that those are isomorphic to

Ln(Dperf(R), Ϙ) = Ln(Dperf(R), Ϙ, w, τ) =
{Poincaré objects of lenght k(n)}

{Those with Lagrangians of length k(n)}
where

k(n) =


2 for n ≤ 1

n+ 1 for 1 ≤ n ≤ d
d+ 1 for n ≥ d

If for example R is of dimension 1 then we simply get that those groups are isomor-
phic to the respective Witt groups in each degree.

Definition 11.6. For any ring with involution R we define the genuine symmetric
Lgs(R) and genuine quadratic L-groups Lgq(R) as

Ln(Dperf(R), Ϙ)

for Ϙ the functor that assigns the abelian group of symmetric or quadratic forms, i.e.

Ϙ
gs(P ) = HomProjR⊗R(P ⊗ P,R)C2

Ϙ
gq(P ) = HomProjR⊗R(P ⊗ P,R)C2 .

We will also sometimes abbreviate ‘gs’ to ‘g’ and just speak of genuine L-theory.

We observe that there is a sequence of maps

Lq∗(R)→ Lgq∗ (R)→ Lgs∗ (R)→ Ls∗(R)

induced from the maps

BhC2 → BC2

Nm−−→ BC2 → BhC2

for B the abelian group HomProjR⊗R(P ⊗P,R) with the flip action. In the case that
1
2 ∈ R then all these maps are equivalences. In particular for fields k of characteristic
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6= 2 we get that Lgq∗ (k) = Lgs∗ (k) is given by the Witt group of k n degree 4n and 0
else.

Proposition 11.7. The linear part of the genuine symmetric functor is given by
the functor

Dperf(R)op → Sp X 7→ mapR(X, τ≥0R
tC2)

The linear part of the genuine quadratic functor is given by the functor

Dperf(R)op → Sp X 7→ mapR(X, τ≥2R
tC2)

Proof. Establish the squares... �

Remark 11.8. There is also a functor in between, given by even forms.

We now also want to compute the genuine L-groups for other fields and rings
(especially the integers). In general we have the following result:

Theorem 11.9. Let R be noetherian with involution. For the canonical morphisms

Lq∗(R)→ Lgq∗ (R)→ Lgs∗ (R)→ Ls∗(R)

we have that

(1) the first morphism is an isomorphism in degrees ∗ ≤ 1 and surjective in
degree ∗ = 2.

(2) The second is an isomorphism in degrees ∗ /∈ [−2, dim +2], surjective in
degree ∗ = −2 and injective in degree dim +2.

(3) The third is bijective in degrees ∗ ≥ dim−1 and injective for ∗ = dim−2.

For arbitrary rings (that is without the noetherian assumption) the lower estimates
still hold. In general we have that Lgq∗ (R) = Lgs∗+4(R).

Proof. The first three estimates follow from our surgery results (with some care
about comparing the functors) and will be skipped. For the last claim we have to
show that we have an equivalence

(Dperf(R), Ϙgq)
[−2]−−→ (Dperf(R), Ϙgs)

of Poincaré-∞-categories. To see this we have to analyse the genuine symmetric
functor on P [−2] for P a finitely generated, projective R-module. To do this we
note that the bilinear part is given by symmetric even forms. �

Theorem 11.10. We have that

Lgq∗ (F2) =

{
Z/2 for ∗ = 2n, n 6= 1

0 else
Lgs∗ (F2) =

{
Z/2 for ∗ = 2n, n 6= −1

0 else

and

Lgq∗ (Z) =


Z for ∗ = 4n

Z/2 for ∗ = 4n+ 1, n ≥ 1

Z/2 for ∗ = −4n− 2, n ≥ 0

0 else

Lgs∗ (Z) =


Z for ∗ = 4n

Z/2 for ∗ = 4n+ 1, n ≥ 0

Z/2 for ∗ = −4n− 2, n ≥ 1

0 else

Proof. By the periodicity we can restrict attention to the genuine quadratic cases.
For F2 we find that they agree with the quadratic ones in degrees ≤ 1 and with
the symmetric ones in degrees ≥ 3. Thus in these cases the result follows from our
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previous discussions. It only remains to determine the case ∗ = 2 in which we find
that

Z/2 = Lq2(F2)→ Lgq2 (F2)→ Ls2(F2) = Z/2
is a epi-mono factorization. But the composite map is 0 by Proposition 10.8 so that
the result also follows.

In the case of the integers the result (in the genuine quadratic case) follows in
degrees ≤ 1 and ≥ 4 also directly from the previous computations. Thus it remains
to determine the cases ∗ = 2 and ∗ = 3. In the first case we get an epimorphism

Z/2 = Lq2(Z)→ Lgq2 (Z) .

and in the second case a monomorphism

Lgq3 (Z)→ Ls3(Z) = 0 .

In the ∗ = 3 case the result immediately follows and in the ∗ = 2 case one can
show that the group is indeed zero, as it can be computed as the Witt group of even
antisymmetric forms. �

12. Higher Grothendieck–Witt groups

We recall that for a ring R with involution we can define the spectra

GWs(R) = {groupoid of unimodular, symmetric forms over R}grp

GWq(R) = {groupoid of unimodular, quadratic forms over R}grp .

Here we take the group completion with respect to direct sum.

Construction 12.1. We hope the reader is familiar with the construction of con-
nective spectra using group completion. Let us quickly sketch this, also to review
the terminology... Digression about E∞-spaces and conncective spectra, group com-
pletion etc?

More generally for an additive∞-categoryA with a Poincaré-structure Ϙ we define

GW(A, Ϙ) = {∞-groupoid of Ϙ-Poincaré forms in A}grp .

This is by definition a connective spectrum and has the property that its π0 is given
by our old GW0(A, Ϙ).

We now want to define the Grothendieck-Witt groups also for general Poincaré-
∞-categories. The general idea is to introduce for any Poincaré-∞-category (C, Ϙ) a
(connective) spectrum

GW(C, Ϙ) ∈ Sp≥0

which generalizes our previous definition of GW0(C, Ϙ) in that this is π0 of our
spectrum.

Definition 12.2 (Sketch). The connective Grothedieck–Witt spectrum

GW(C, Ϙ) := Ω|Cob(C, Ϙ)|
where Cob(C, Ϙ) is the cobodism ∞-category of (C, Ϙ) which is informally given as
follows:

Objects are (−1)-dimensional Poincaré objects in (C, Ϙ). A morphism (X, q) to
(X ′, q′) is given by a Lagrangian (aka nullbordism) of (X ⊕X ′, q − q′). One should
think of the latter as a cobordism from (X, q) to (X ′, q′) similar to the case of mani-
folds. This∞-category is symmetric monoidal under direct sum so that Ω|Cob(C, Ϙ)|
really becomes a connective spectrum.
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Let’s first take a step back and discuss the analogous K-theory versions. Recall
that for an additive ∞-category A we have that

K(A) = (A',⊕)grp ∈ Sp≥0

Definition 12.3. The K-theory spectrum of a stable ∞-category C is defined as

K(C) := Ω|Span(C)|

where Span(C) is the ∞-category of spans in C, informally given as the ∞-category
whose objects are the objects of C and whose morphisms are given by spans X ←
L→ Y . A 2-morphism is given by an equivalence of spans. Composition of spans is
given by pullback and Ω| Span(C)| becomes a commutative group object under direct
sum of spans.

We will make this definition precise soon. In fact this is really Quillen’s definiton
by means of the Q-construction, though he did not do this in the setting of stable
∞-categories of course. In our generality this is (a special case of) a definition due
to Barwick–Rognes. Before we give a precise definition of the ∞-category of spans
let us understand why this definition generalizes the definition of K0(C) for a stable
∞-category C.

Lemma 12.4. The space |Span(C)| is connected and π0(K(C)) = π1(| Span(C)|) is
naturally isomorphic to our old definition of K0(C).

Proof. The first part is clear since for every object we have the span A ← A → 0.
The second part will be left as an exercise and we will present a nice conceptual
solution soon. �

Definition 12.5. Let C be a category. We define the twisted arrow category to be
the category TwArr C whose objects are arrows f : A→ B in C and whose morphisms
f → f ′ are commutative diagrams

A
f
//

��

B

A′
f ′
// B′

OO .

Composition is vertical stacking of diagrams. We let TwArr ∆n be the nerve of the
twisted arrow category of the category [n] whose nerve is ∆n.

Example 12.6. For any poset P (like [n]) we get that TwArrP is given by the poset
whose elements are pairs i, j ∈ P with i ≤ j and with the relation that ij ≤ i′j′ if
i ≤ i′ and j ≥ j′.

We have that TwArr ∆0 = ∆0 and TwArr ∆1 can be depicted as

01

~~ !!

00 11
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The category underlying TwArr ∆n can be depicted as follows:

0n

|| ""...

|| ""

...

||
!!02

~~   

13

}}
  

...

~~
!!

01

~~   

12

~~ !!

...

~~
  

n− 1n

}} ""
00 11 22 ... nn

In particular we can think of a functor TwArr ∆n → C as a diagram in C of this
shape.

Remark 12.7. The twisted arrow category is the (Cartesian) Grothendieck con-
struction of the Hom-functor Cop × C → Set. In fact one can define a twisted arrow
category for any ∞-category, but we refrain from doing so.

Definition 12.8. For any ∞-category C we define a functor Q•(C) : ∆op → Cat∞
by letting

Qn(C) ⊆ Fun(TwArr ∆n, C)
be the full subcategory consisting of those diagrams F : TwArr ∆n → C for which
every square

F (ii+ 2)

ww ((

F (ii+ 1)

''

F (i+ 1i+ 2)

vv

F (i+ 1i+ 1)

with 0 ≤ i ≤ n− 2 is a pullback in C. We let

Q'• (C) : ∆op → S
be the associated functor obtained by discarding the non-invertible morphisms.

Proposition 12.9. If C admits finite pullbacks then the object Q'• (C) is a complete
Segal space, that is there is a unique∞-category Span(C) such that we have a natural
equivalence

Q'• (C) ' Fun(∆•, Span(C))' .
If C moreover admits a terminal object then Span(C) admits a symmetric monoidal
struture given by

X ⊗ Y = X × Y.
and every object in Span(C) is self dual.

We warn the reader that the symmetric monoidal structure is not the Cartesian
one, since X × Y is not the Cartesian product in the category Span(C).
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Proof. One directly verifies the properties of a complete Segal space: the Segal
condition follows since a diagram of the shape

0n

|| ""...

|| ""

...

||
!!02

~~   

13

}}
  

...

~~
!!

01

~~   

12

~~ !!

...

~~
  

n− 1n

}} ""
00 11 22 ... nn

in C in which all squares are pullbacks is already determined by its restriction to

01

~~   

12

~~   

...

~~
  

n− 1n

}} ""
00 11 22 ... nn

since the upper squares can be recovered by forming pullbacks (we skip the fine
details). The completness basically follows since a morphism A ← B → C that is

an equivalence as a span, is always induced by an equivalence A
'−→ C in C. Again

we skip the details.
For the second part we need to equip Span(C) with the structure of a commutative

monoid in Cat∞ which is equivalent to equipping the functor Q'• (C) : ∆op → S with
a refinement through CMon(S). For the latter we simply equip Fun(TwArr ∆n, C)
with the Cartesian structure and note that the induced functors from [n] → [m] in
∆ preserves this structure.

Finally in order to verify that every object X ∈ C is self dual we simply exhibit
evaluation and coevaluation of the duality as

ev : X ×X ∆←− X → pt

coev : pt← X
∆−→ X ×X .

The Zig-Zag identity, then follows since the composite of spans

X ×X

p1
{{

id×∆

''

X ×X
∆×id

ww

p2

##

X X ×X ×X X

is given by the identity span on X as one directly sees using that the pullback in
the middle is equivalent to X. �

Remark 12.10. Taking the dual morphism in Span(C) is very tautalogical as it
just interchanges the orders of the legs of a span. Also the equivalence

MapSpan(C)(A×B,C) = MapSpan(C)(A,B × C)
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induced from the abstract fact that B∨ = B is a tautology if one spells out what
these spaces look like.

Now it is clear that any right exact functor C → D between ∞-categories with
finite limits induces a symmetric monoidal functor

Span(C)→ Span(D)

by ‘pointwise’ application. In particular when applied to stable∞-categories we get a
functor from the∞- category of stable∞-categories to the∞-category of symmetric
monoidal ∞-categories. Then, as in Definition 12.3 above we geometrically realize
this symmetric monoidal ∞-category to get a commutative monoid object

|Span(C)| ∈ CMon(S) .

Taking Ω thus produces a commutative group

Ω| Span(C)| ∈ CGrp(S) ' Sp≥0 .

Also note that taking Ω does not loose any information as the original space |Span(C)|
was connected as shown in Lemma 12.4. Thus it was in fact already a group.

Now in the case of a ring R one could wonder about the relation between K(R)
defines as the group completion

K(R) = {groupoid of f.g. projective R-modules}grp

and

K
(
Dperf(R)

)
= Ω| Span(C)|

There is a canonical map

K(R)→ K
(
Dperf(R)

)
= Ω|Span(C)|

given by sending P to the span 0 ← P → 0.19 Proposition 8.11 together with
Lemma 12.4 shows that this morphism is an isomorphism on π0. In fact we have
the following more general result:

Theorem 12.11 (Gillet–Waldhausen, Fontes). Assume that a stable ∞-category C
admits a bounded weight structures. Then the canonical map

K(Cw♥)→ K(C)
is an equivalence of connective spectra.

Proof. The idea is roughly the following: �

Now we want to turn our attention back to the case of a Poincaré-∞-category
(C, Ϙ) and define the corrsponding cobordism category Cob(C, Ϙ) explained in Defi-
nition 12.2. Roughly speaking this is a refinement of Span(C) where all the objects
X ∈ Span(C) are equipped with the structure of Poincaré objects of dimension −1
and all the spans are equipped with the structure of algebraic cobordisms. Note that
the funny dimension shift is such that the ’relevant’ spans 0← X → 0 then encode
Poincaré objects if dimension 0. The key to implement this idea technically is to
take the Q-construction and equip it with the structure of a Poincaré-∞-category.

19Formally this is implemented by considering a symmetric monoidal subcategory of
Span(Dperf(R)) with the single object 0 and the morphisms given by 0 ← P → 0 for P finitely
generated projective. This then implements a deloop of the ∞-groupoid ProjR.
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Construction 12.12. Let (C, Ϙ) be a Poincaré-∞-category. Then for any n we
equip Qn ⊆ Fun(TwArr ∆n, C) with a functor Ϙn given by

Ϙn(F ) = lim
(TwArr ∆n)op

Ϙ(F ) .

We claim that this functor is in fact quadratic and even Poincaré. The first assertion
immediately follows from the observation that the cross effect and the linear part
are both given pointwise, i.e.

BϘn(F,G) = lim
(TwArr ∆n)op

BϘ(F,G)

LϘn(F ) = lim
(TwArr ∆n)op

LϘ(F ) .

These are clearly bilinear and linear. Now in order to see that Ϙn is Poincaré we
have to identify the duality. First in the case n = 0 we have C and in the case n = 1
we find by an explicit calculation that

BϘ1(A← B → C,A′ ← B′ → C ′)

= BϘ(A,A
′)×BϘ(B,B′) BϘ(C,C

′)

= mapC(A,DA
′)×mapC(B,DB′) mapC(C,DC

′)

= mapQ1
(A← B → C,DA′ ← DA′ ×DB′ DC ′ → DC ′)

For the higher n it is then very easy to see that we in fact have that as pairs of a
stable ∞-category together with a quadratic functor we have that

Qn = Q1 ×Q0 ...×Q0 Q1

meaning that the quadratic functors are also simply the pullbacks of the respective
quadratic functors. As a result we get that all of the Qn are also Poincaré where
the duality is given by applying the respective dualities on the part

01

~~   

12

~~   

...

~~
  

n− 1n

}} ""
00 11 22 ... nn

Now for any map [n]→ [m] we get an induced transformation

(Qm, Ϙm)→ (Qn, Ϙn)

induced from the map TwArr ∆n → TwArr ∆m and the universal property of the
limit. We claim that this is a Poincaré functor. This again simply follows by
observing the effect on the duality of the relevant part of the diagram. In total we
conclude that we have a refinement of Q•(C) : ∆op → Cat∞ to a functor

Q•(C, Ϙ) : ∆op → Catp∞ .

We can postcompose with the functor P : Catp∞ → S given by sending (C, Ϙ) to the
space P(C, Ϙ) of Poincaré objects. This way we obtain a functor

PQ•(C, Ϙ) : ∆op → S

Proposition 12.13. The object PQ•(C, Ϙ) is a complete Segal space for any (C, Ϙ).
The associated ∞-category admits a canonical symmetric monoidal structure given
by direct sum in which every object (X, q) is dualizable with dual (X,−q).
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Proof. We argue as in the proof of Proposition 12.9. All the steps are verbatim the
same, except for the last step we have to equip the unit and counit transformations
with the respective forms. �

Definition 12.14. For a given Poincaré-∞-category we let Cob(C, Ϙ) be the sym-
metric monoidal ∞-category with associated complete Segal space PQ•(C, Ϙ[1]) .

Proof of Proposition 12.13. Similar... �

Lemma 12.15. We have that |Cob(C, Ϙ)| is a group object in S and that its π0 is
isomorphic to L−1(C, Ϙ) and its π1|Cob(C, Ϙ)| is naturally isomorphic to GW0(C, Ϙ).

Proof. It is clear that π0|Cob(C, Ϙ)| is given by cobordism classes of −1-dimensional
Poincaré objects. But this is precisely the definition of L−1(C, Ϙ), or at least equiv-
alent to it (see Lemma 6.11 for details). From this we also see that π0|Cob(C, Ϙ)| is
a group and not just a monoid. In general a commutative monoid object in S is a
group preicsely if π0 is a group. We skip the presentation of π1. �

Remark 12.16. As explained before we then define a connective spectrum as the
spectrum associated with

GW(C, Ϙ) := Ω|Cob(C, Ϙ)|

In contrast to the case of Span(C) we can in fact define a spectrum in Sp≥−1 by
considering the downshift of the spectrum associated with |Cob(C, Ϙ)|. The con-
nective cover agrees with our GW(C, Ϙ) and its (−1)st homotopy group agrees with
L−1(C, Ϙ). One can in fact one can very naturally define a non-connective spec-
trum whose negative homotopy groups agree with the negative L-groups and whose
connective cover is equivalent to our GW(C, Ϙ).

Example 12.17. We have that GW(Hyp(C)) = K(C). To see this note that
P(Hyp(C)) ' C' and also observe that Qn(Hyp(C)) ' Hyp(Qn(C)).

We now want to compare GW -theory of a ring R to the Grothendieck Witt theory
of the associated perfect derived∞-category. This can be done in greater generality,
as in the case of K-theory.

Theorem 12.18 (Hebestreit-Steimle). Let (C, Ϙ) be a Poincaré-∞-category with a
bounded weight structure. Then the canonical map

GW
(
Cw♥, Ϙ|Cw♥

)
→ GW(C, Ϙ) .

is an equivalence of connective spectra.

Corollary 12.19. For any ring R with involution we have equivalences

GWs(R) ' GW(Dperf(R), Ϙgs) and GWq(R) ' GW(Dperf(R), Ϙgq)

More generally for any Poincaé functor

Ϙ : Projop
R → Ab

we have an equivalence

GWϘ(R) ' GW(Dperf(R), Ϙ)

where Ϙ is the non-abelian derived quadratic functor.
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13. Poincaré-Verdier-Sequences

In this section we want to discuss the arguable most important property of the
Grothendieck–Witt spectrum. Let us warm up first by considering the respective
property for K-theory.

Definition 13.1. An exact functor p : D → C between stable ∞-categories is called
a Verdier projection of C is obtained from D by Dwyer–Kan inverting a class W of
weak equivalences. It is said to be left/right split if it admits a fully faithful left/right
adjoint. It is said to be split or to exhibit a recollement of D if it admits both adjoints
and both are fully faithful.

Note that if p admits a fully faithful adjoint on either side then it is automatically
a DK localization.

Example 13.2. (1) The projection p : C ⊕D → D for every pair C,D of stable
∞-categories is a split Verdier projection.

(2) For every stable ∞-category C the target projection C∆1 → C is a split
Verdier projection.

(3) The functor Dperf(Z)→ Dperf(Q) is a Verdier projection but does not admit
either adjoint. To see this observe that any exact functorDperf(Q→ Dperf(Z)
is necessarily zero, since no object in Dperf(Z) is rational.

Theorem 13.3. (Additivity) Assume that we have a pullback square

D′

��

// D

��

C′ // C
in which the vertical maps are split Verdier projections. Then the induced diagram
on K-theory spectra is also a pullback.

Proof. The induced map Span(D) → Span(C) is a Cartesian and coCartesian fi-
bration as one can verify directly. Thus it is a realization fibration by a result of
Steimle. Moreover we have that the induced square

Span(D′)

��

// Span(D)

��

Span(C′) // Span(C)

is a pullback since this is levelwise true for the Q-construction. Together these facts
show that the resulting square is a pullback of connective spectra. But since the
map D → C admits a section it also follows that it is surjective on K0 and thus we
have a pullback of spectra (which happen to be connective). �

Example 13.4. We have that K(C∆1
) = K(C)⊕K(C). More generally for any split

Verdier projection p : D → C we have that K(D) = K(C)⊕K(ker p). In particular
this also implies that K(D⊕C) = K(D)⊕K(C). The last fact is of course also easy
to check directly.

Remark 13.5. • The analogous result to Theorem 13.3 for Verdier sequences
is also true but harder to prove and we will not need it here.
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• One can also show that K-theory as a functor from stable ∞-categories to
spectra is the universal functor with a chosen map S→ K(Spfin) and that has
the property of Theorem 13.3. More precisely for any functor F : Catst → Sp
together with a map x : S → F (Spfin) which satisfies the conclusion of the
additivity Theorem there exists an essentially unique transformation K → F
that carries the class of the sphere to x. This is a result of Barwick and
Blumberg–Gepner–Tabuada.

Definition 13.6. We say that a map

(p, η) : (D, Ϙ)→ (C, Ϙ′)
is a Poincaŕ-Verdier projection if the underlying functor is a Verdier projection and
the transformation η : Ϙ→ p∗Ϙ′ exhibits Ϙ′ as a left Kan extension of Ϙ.

In the case of a Poincaŕ-Verdier projection we get an induced Poincaré-structure
on ker(p) be restriction of Ϙ. Then we will also refer to the sequence

(ker p, Ϙ|ker p)→ (D, Ϙ)→ (C, Ϙ′)
as a Poincaré-Verdier-sequence.

Lemma 13.7. For a map (D, Ϙ) → (C, Ϙ′) of Poincaré-∞-categories the following
are equivalent:

(1) The underlying map p : D → C admits a fully faithful left adjoint.
(2) The underlying map p : D → C admits a fully faithful right adjoint.
(3) The underlying map p : D → C exhibits D as a recollement.

Proof. Assume that (1) holds with left adjoint L. Then the fully faithful functor
Lop is right adjoint to pop : D → C. But the dualities induced a commutative square

D
p
//

D
��

C

D
��

Dop pop

// Cop

so that p ' pop which shows that p has a fullly faithful right adjoint given by
X 7→ L(Xop)op. Thus (3) holds. The other implications are either trivial or work
the same. �

Definition 13.8. In either of the cases of Lemma 13.7 we say that the map (D, Ϙ)→
(C, Ϙ′) exhibits (D, Ϙ) as a Poincaré recollement or that p is a split Verdier projection.

Example 13.9. For every Poincaré-∞-category (C, Ϙ) the map Met(C, Ϙ) → (C, Ϙ)
is a split Poincaré-Verdier projection. Since we already know that the underlying

map, given by the target projection C∆1 → C, is a split Verdier projection we only

have to verify that Ϙ : Cop → Sp is the left Kan extension of Ϙmet : (C∆1
)op → Sp

along the target projection. But the left Kan extension Kan be computed as the
pullback along the left adjoint to the target projection (since there is an op and the
contravariance). The left adjoint to the target projection is given by the functor

C → C∆1
X 7→ (0→ X) .

As a result the left Kan extension is given by

(p!Ϙmet)(X) = Ϙmet(0→ X) = fib(Ϙ(X)→ Ϙ(0)) = Ϙ(X) .
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The kernel is given by (C, Ϙ[−1]) so that we have a split Poincaré–Verdier sequence

(C, Ϙ[−1])→ Met(C, Ϙ)→ (C, Ϙ)

Example 13.10. For any pair of Poincaré-∞-categories (C, Ϙ) and (D, Ϙ′) the pro-
jection (C ⊕ D, Ϙ ⊕ Ϙ′) → (C, Ϙ′) is a split Poincaré-Verdier projection. Again the
only new claim is that Ϙ′ is the left Kan extension of Ϙ ⊕ Ϙ′ along the projection,
which is straighforward to verify.

Remark 13.11. The projection Met(C, Ϙ)→ (C, Ϙ) is the universal split Poincaré–
Verdier projection with kernel (C, Ϙ[−1]) in the following sense: for any split Poincaré–
Verdier sequence p : (D, Ϙ′)→ (E , Ϙ′′) with kernel (ker p, Ϙ′) = (C, Ϙ[−1]) there exists
a pullback diagram

(D, Ϙ′)

��

// Met(C, Ϙ)

��

(E , Ϙ′′) // (C, Ϙ) .

Theorem 13.12. (Poincaré-Additivity) Assume that we have a pullback square of
Poincaré-∞-categories

(D′, ϘD′)

��

// (D, ϘD)

��

(C′, ϘC′) // (C, ϘC)
in which the vertical maps are split Poincaré–Verdier projections. Then the induced
diagram on GW -theories

GW(D′, ϘD′)

��

// GW(D, ϘD)

��

GW(C′, ϘC′) // GW(C, ϘC)

is also a pullback of connective spectra.

Proof. The proof works precisely as the one of Theorem 13.3: one shows that the
induced functor

Cob(D, ϘD)→ Cob(C, ϘC)
is a Cartesian and coCartesian fibration. Thus it is a realization fibration and the
result follows by the observation that the square

Cob(D′, ϘD′)

��

// Cob(D, ϘD)

��

Cob(C′, ϘC′) // Cob(C, ϘC)

is a pullback of ∞-categories which follows directly from the definition using the
hermitian Q-construction. Finally we use that taking loop spaces preserves pull-
backs. �

Corollary 13.13. For any Poincaré–Verdier seuqence

(E , ϘE)→ (D, ϘD)→ (C, ϘC)
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there is a natural long exact sequence

...→ GW1(D, ϘD)→ GW1(C, ϘC)→ GW0(E , ϘE)→ GW0(D, ϘD)→ GW0(C, ϘC) .
Remark 13.14. We warn the reader that in general the pullback is not a pullback
of spectra as the map

GW0(D, ϘD)→ GW0(C, ϘC)
is in general not surjective. In fact the proof of Theorem 13.12 shows that one can
continue the sequence of Corollary 13.13 to the right as

GW0(D, ϘD)→ GW0(C, ϘC)→ L−1(E , ϘE)→ L−1(D, ϘD)→ L−1(C, ϘC)
With some more care one can even further continue with the lower L-groups. In
other words: if we define non-connective spectrum GW(C, Ϙ) as indicated in Remark
12.16 then one does get a pullback of spectrum in Theorem 13.12.

Remark 13.15. • One also has a version of Theorem 13.12 and Corollary
13.13 for Poincaré-Verdier projections that are not necessarily split, but we
will not need this here.
• In fact, Grothendieck–Witt theory also enjoys a universal property similar

to the one of K-theory discussed in Remark 13.5.

Recall that for any Poincaré-∞-category (C, Ϙ) we have the map

Hyp(C)→ Met(C) (X,Y ) 7→ (X → X ⊕DY )

of Poincaré-∞-categories as discussed in Example 5.18.

Corollary 13.16. For any Poincaré-∞-category the induced map

K(C) ' GW(Hyp(C))→ GW(Met(C))
is an equivalence.

Proof. Both sit in fibre sequences... �

One should see the last statement as a categorification of the defining relation for
GW0 that metabolic and hyperbolic forms agree.

14. The fundamental long exact sequence

In this section we want to prove that there is a long exact sequence

. . . L2(C.Ϙ)

H1(C2;K(R)) GW1(C, Ϙ) L1(C, Ϙ)

H0(C2;K(R)) GW0(C, Ϙ) L0(C, Ϙ 0

extending the one of Proposition 6.12 In order to establish this we first need to con-
struct the C2-action on the K-theory spectrum induced by the duality on C and the
hyperbolic map.

Proposition 14.1. For any Poincaré-∞-category (C, Ϙ) the space C' carries a nat-
ural C2-action induced by the duality D and there is a map

(C')hC2 → P(C, Ϙ)
induced by sending X to the hyperbolic form on X.
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Proof. Let BϘ as usual denote the cross effect of Ϙ. We consider the Poincaré-∞-
category

(C × C, BϘ)
with duality given by (X,Y ) 7→ (DY,DX). It carries a C2-action given by flipping
the coordinates which refines to a map of Poincaré-∞-categories using the fact that
BϘ is a symmetric bilinear functor. Moreover there is a C2-equivariant functor

(C × C, BϘ)→ (C, Ϙ) (X,Y ) 7→ X ⊕ Y
where we use that the map (B∆

Ϙ
)hC2 . As a result of the functoriality of P we get a

C2-action on P(C × C, BϘ) and an induced map

P(C × C, BϘ)hC2 → P(C, Ϙ) .
Finally the claim now follows from the observation that

P((C × C, BϘ) = P(Hyp(C)) = C'

which can be checked easily (see 5.11 for the π0 statement). �

Proposition 14.2. For any Poincaré-∞-category (C, Ϙ) there is a C2-action on
Span(C) and consequently on K(C) and an induced functor

Span(C)hC2 → Cob(C, Ϙ)
induced by forming hyperbolic objects which induces a map of connective spectra

K(C)hC2 → GW(C, Ϙ) .

Proof. Apply the last claim levelwise to the Q-construction. �

Lemma 14.3. For the hyperbolic category (C, Ϙ) = (D ×Dop,mapD) the maps

(C')hC2 → P(C, Ϙ) and K(C)hC2 → GW(C, Ϙ) .
are equivalences.

Proof. It suffices to verify the first claim, the second follows by forming the real-
ization. But in the case of the hyperbolic category we find that P(C, Ϙ) = D' and
that C' = D' × D'. Unfolding the constructions we get that the C2-action flips
the factors and thus the claim follows. �

Definition 14.4. For any Poincaré-∞-category (C, Ϙ) we define a connective spec-
trum

l(C, Ϙ) := cof(K(C)hC2

hyp−−→ GW(C, Ϙ))

Theorem 14.5. The homotopy groups of l(C, Ϙ) are naturally isomorphic to the
L-groups.

Proof. We first proof that there is a natural isomorphism

L0(C, Ϙ) ∼= π0(l(C, Ϙ)) .
To this end we simply observe that by definition we have an exact sequence

π0 (K(C)hC2)→ π0(GW(C, Ϙ))→ π0(l(C, Ϙ))→ 0

that exhibits π0(l(C, Ϙ)) as the cokernel of the π0-effect of the hyperbolic map. But
this is the hyperbolic map discussed earlier so that the π0-claim follows from Propo-
sition 6.12. Now we oberserve that for any given split Poincaré-Verdier sequence

(E , ϘE)→ (D, ϘD)→ (C, ϘC)
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we get a map of induced sequences

K(E)hC2
//

��

K(D)hC2
//

��

K(C)hC2

��

GW(E , Ϙ) //

��

GW(D, Ϙ) //

��

GW(C, Ϙ)

��

l(E , Ϙ) // l(D, Ϙ) // l(E , Ϙ)

of which the first two horizontal sequences are fibre sequences by Additivity (The-
orem 13.3) and Poincaré-Additivity (Theorem 13.12). We deduce that the lower
sequence is a fibre sequence except for a potential π0-issue. But this immediately
gets resolved by the ..

Now we apply this observation to the universal split Poincaré–Verdier sequence
to get a long exact sequence

...→ πnl(Met(C, Ϙ)→ πnl(C, Ϙ)→ πn−1l(C, Ϙ[−1])→ πn−1(l(Met(C, Ϙ))→ ...

Now combining Corollary 13.16 and Lemma 14.3 we find that l(Met(C, Ϙ) = 0. As a
result we get an isomorphism

πnl(C, Ϙ) = πn−1(l(C, Ϙ[−1]) = ... = π0(l(C, Ϙ[−n])

But by the first part of the proof we have

π0(Met(C, Ϙ[−n]) = L0(C, Ϙ[−n]) = Ln(C, Ϙ)
which finishes the proof. �

Remark 14.6. Again as before, if one uses non-connective versions of GW then the
cofibre of the map

K(C)hC2 → GW(C, Ϙ)
will be a non-connective spectrum whose homotopy groups are the L-groups in all
degrees.

There is also a more canonical way to define a spectrum L(C, Ϙ) whose homotopy
groups are the L-groups and which has been worked out by Lurie in []. Then one
can promote Theorem 14.5 to an equivalence

l(C, Ϙ) ' τ≥0L(C, Ϙ) .
of spectra.

Finally we note that we have shown in the proof of Theorem 14.5 that l vanishes
on metabolic Poincaré-∞-categories and that it satisfies Poincaré-Additivity. These
two facts together are equivalent to

We define for a ring R with involution spectra lgs(R) and lgq(R) and note that
they habe homotopy groups given by the classical L-groups by Definition 7.19.

Corollary 14.7. For any ring R with involution we get fibre sequences of spectra

K(R)hC2 → GWs(R)→ lgs(R) and K(R)hC2 → GWq(R)→ lgq(R)

Corollary 14.8. We have equivalences

GW∗(C, Ϙ)[1
2 ] ' K∗(C)[1

2 ]C2 ⊕ L∗(C, Ϙ)[1
2 ]

for all ∗ ≥ 0.
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Proof. After inverting 2 the fibre sequence

K(C)hC2 → GW(C, Ϙ)→ l(C, Ϙ)

splits by the map

GW(C, Ϙ)[1
2 ]→ GW(C)hC2 [1

2 ]→
(
GW(C, Ϙ)[1

2 ]
)hC2 '−→ K(C)[1

2 ]hC2 = K(C)hC2 [1
2 ]

which shows the claim. �

15. GW-theory of the integers

Now in this section we want to apply our fundamental long exact sequence to the
case of the intergers to compute the Grothendieck–Witt groups of the integers.

Let us first sketch the computation away from the prime 2, which was (essentially)
known before. We have for ∗ ≥ 0 an isomorphism

GWs
∗(Z)[1

2 ] = Lgs∗ (Z)[1
2 ]⊕

(
K∗(Z)[1

2 ]
)C2 =

{
Z[1

2 ]⊕
(
K∗(Z)[1

2 ]
)C2 ∗ = 0 mod 4(

K∗(Z)[1
2 ]
)C2 else

Thus it remains to work out what the C2-action does on the K-groups K(Z)[1
2 ]. To

this end we use the Quillen-Lichtenbaum conjecture, which implies that one has for
` an odd prime isomorphisms

K2n−2(Z)` = H2
proét

(
Z[1

` ];Z`(n)
)

K2n−1(Z)` = H1
proét

(
Z[1

` ];Z`(n)
)

where Z`(n) = K2n(−)` is the Tate twist. The involution entirely acts on the sheaf
Z`(n) by naturality. We want to compute what the involution does on on points, i.e.
on K2n(k)` for k a strict Henselian local ring. But by results of Gabber and Suslin
these are (canonically enough) equivalent to K2n(k)` = π2n(ku`) so that it suffices
to work out what the involution on ku induced by the trivial involution C→ C does
on homotopy. This involution induces the complex conjugation on the K-theory
spectrum ku (also equivalent to the Adams operation ψ−1) so that it sends the Bott
element β to −β. As a result the involution acts as (−1)n on βn and thus also by
(−1)n on Z`(n). As a consequence we find that the involution acts by multiplication
with (−1)n on K2n−2(Z)` and K2n−1(Z)` for ` odd. Thus by finite generation it also
acts by (−1)n on K2n−2(Z)[1

2 ] and K2n−1(Z)[1
2 ] and we obtain the following result:

Theorem 15.1. We have for ∗ ≥ 0 isomorphisms

GWs
∗(Z)[1

2 ] =


Z[1

2 ] ∗ = 0 mod 4

0 ∗ = 1 mod 4

K∗(Z)[1
2 ] ∗ = 2, 3 mod 4 .

The order of the groupsK∗(Z)[1
2 ] that appear here, which are by the above discuss-

sion given by étale cohomology groups, is known in all degrees and can be expressed
in terms of denominators of Bernoulli numbers. For ∗ = 3 mod 4 these groups are
known for be cyclic in all degrees and for ∗ = 2 mod 4 they are known to be cyclic
for ∗ ≤ 20000 and conjectured to be cyclic in all degrees.

Now we want to understand the Grothendieck–Witt groups at the prime 2. To
this extend we shall use a model for K-theory of the integers conjectured first by
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Bökstedt and then shown by Dwyer-Friedlander to be implied by the 2-primary
Lichtenbaum-Quillen conjecture which was eventually resolved by Voevodsky:

Theorem 15.2. There is a fibre sequence

K(Z)2 → ko2
c(ψ3−1)−−−−−→ τ≥4ku

of spectra where (−)2 denotes 2-adic completion, the first map is the canonical map
induced from Z → R and the second map is the composite of the Adams operation
ψ3 minus the identity

(6) ko2
ψ3−1−−−→ τ≥4ko2

and the 4-connective cover of the complexification map c : ko→ ku.

We of course have that τ≥4ku = bsu ' ku[4] but this identification is not true if
we take the C2-action induced by the duality on ProjC into account. The C2-action
on the spectra ko and ku induced by the duality is given by ψ−1 and with these
actions the fibre sequence becomes a C2-equivariant fibre sequence. Let us analyse
these actions a bit. First of all, the action on ku is given on the homotopy groups
of ku by sending the Bott element β to −β. It is the connective cover of the usual
C2-action on KU which has the property that KUhC2 = KO. It follows that we have

ko = τ≥0

(
kuhC2

)
and that the C2 action on ko is trivial.

Remark 15.3. The fibre of the map (6) is also called the (2-adic) real image of
J-spectrum and denoted by jR we will also later use the variant

j′R := fib

(
ko2

ψ3−1−−−→ τ≥2ko2

)
which receives a map jR → j′R that is an isomorphism in degrees > 1. This is
why Bökstedt called the fibre of c(ψ3 − 1) : ko2 −→ τ≥4ku the integral image of J
spectrum jZ. There are also non-connective variants of the image of j spectra, e.g.
the spectrum

JR = fib

(
KO2

ψ3−1−−−→ KO2

)
which is equivalent to the K(1)-local sphere SK(1) at the prime 2. Similarly one has
the spectrum

JZ = fib

(
KO2

c(ψ3−1)−−−−−→ KU2

)
which is the K(1)-localization of K(Z) at the prime 2.

We now use the cofibre sequence

K(Z)hC2 → GWs(Z)→ ls(Z)

and the map GWs(Z)→ K(Z)hC2 to get a map ls(Z)→ K(Z)tC2 .

Lemma 15.4. The map Ls(Z)→ K(Z)tC2 is a 2-completion.
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Proof. We first argue that the homotopy groups of both sides are abstractly isomor-
phic. Recall that the homotopy groups of the source are given by Z in degrees ∗
mod 4 and Z/2 in degrees ∗ = 1 mod 4. To this end we use the fibre sequence of
Theorem 15.2 to get a fibre sequence

K(Z)tC2 → kotC2 → (τ≥4ku)tC2

Now one uses the Tate spectral sequences to deduces that the homotopy groups of
kotC2 are give by Z[x±] for |x| = 4 and the homotopy groups of (τ≥4ku)tC2 are given
by Z/2 in degrees 2 mod 4. The differentials can all be imported from the HFPSS
of C2-acting by conjugation on KU. We deduce that the homotoy groups of KZtC2

are abstractly isomorphic to the ones of Ls(Z). Now we need to show that the map
is an isomorphism in all degrees. It suffices to show that it is surjective. For the
classes in degree 0 mod 4 this follows from the existence of ring structures and for
the classes in degree 1 mod 4 one has to use a localization seqeunce that we skip
here. �

Theorem 15.5. We have 2-adic equivalences of spectra

GWs(Z)2 ' τ≥0K(Z)hC2
2 ' j′R ⊕ ko2

with

j′R := fib

(
ko2

ψ3−1−−−→ τ≥2ko2

)
.

Proof. We use the fibre square to deduce the first result. For the second result we
invoke the fibre sequence

K(Z)hC2 → kohC2 → (τ≥4ku)hC2

and observe that since the C2-action on ko is trivial we get 2-adically by the Atiyah–
Segal completion theorem that

τ≥0kohC2 = τ≥0KOhC2 = τ≥0KOhC2 = τ≥0(KO⊕KO) = ko⊕ ko

Now one uses the HFPSS in the second case to deduce that we have an equivalence

τ≥0 (τ≥4ku)hC2 = τ≥2ko

Thus using naturality of the Adams operations we get that the connective cover of
K(Z)hC2 is given by the fibre of the map

ko⊕ ko
∇−→ ko

ψ3−1−−−→ τ≥2ko .

Since the first map is a split surjection we deduce that this fibre is given by

fib(ko⊕ ko
∇−→ ko)⊕ fib(ko

ψ3−1−−−→ τ≥2ko)

which shows the claim. �

Now from the knowledge of the Adams operation ψ3 which sends the Bott element
to 3 times itself and fixes η one can easily compute the homotopy groups of the image
of j spectrum (or look it up in the literature). For example one gets that π3(j′R) is
given by the cokernel of the map ψ3−1 : KO4 → KO4. The generator of KO4 = Z is
given by 2β2, more precisely an element that maps to 2β under the complexification
map ko4 → ku4 = Z{β2}. Thus the map ψ3 acts by multiplication with 9 and
therefore π3(j′R) = Z/8.



88 THOMAS NIKOLAUS

Using some results from number theory we arrive at the following computation of
GWs

n(Z) for n > 0 as

n = GWs
n(Z)

8k Z⊕ Z/2
8k + 1 (Z/2)3

8k + 2 (Z/2)2 ⊕K8k+2(Z)odd
8k + 3 Z/w4k+2

8k + 4 Z
8k + 5 0
8k + 6 K8k+6(Z)odd

8k + 7 Z/w4k+4

where w2n is the denominator of |B2n
4n |

Note that the equivalence GWs(Z)2 ' τ≥0K(Z)hC2
2 was an open conjecture for

quite some time, known as the homotopy limit Problem. One can ask this in much
greater generality and much work had been done on that. It had essentially been
solved for R[1

2 ] where R is a ring of integers in a number field by work of several
people. With our methods we can now extend this result to the following theorem:

Theorem 15.6. Let R be a Dedekind ring whose fraction field is a number field.
Then the map

GWs(R)2 → τ≥0K(R)hC2
2

is an equivalence.

The idea is to translate this immediately into an L-theoretic statement which
is relatively straighforward to verify as we have demonstrated in the case of the
integers.

Finally we also want to compute the quadratic Grothendieck-Witt groups of the
integers. We can in fact calculate the cofibre of the map GWq(R)→ GWs(R) as the
cofibre of the connective cover of the map Lgq(Z)→ Lsq(Z) using the computations
in Theorem 11.10 of both sides. Using this we obtain the following result:

Theorem 15.7. The quadratic Grothendieck–Witt groups of Z are given by

(1) GWq
0(Z) = Z⊕ Z

(2) GWq
1(Z) = Z/2⊕ Z/2

(3) GWq
∗(Z) = GWs

∗(Z) for ∗ ≥ 2

Remark 15.8. We deduce from Theorem 15.6 and Theorem 15.8 that the K(1)-
localizations of GWq(Z) and GWs(Z) are equivalent and given by theK(1)-localization
of S⊕KO.

I find it very surprising that these groups agree in high degree. In fact using the
comparisons of L-groups as given in Theorem 11.9 (based on the t-structure surgery
from Section 9) one immediately gets the following general result:

Theorem 15.9. For any Noetherian ring R with involution of global dimension d
the canonical map GWq

∗(R)→ GWs
∗(R) is injective for ∗ ≥ d+2 and an isomorphism

for ∗ ≥ d+ 3.
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